
COM Automation for Microsoft
Word & Excel

Hummingbird Enterprise™ 2004

5.1.0.5

COM Automation for Microsoft Word & Excel
Version: 5.1.0.5 Service Release 5 and later
Copyright © 1998-2007 Hummingbird Ltd. All rights reserved.
Electronic Publication Date: January 2007

Hummingbird Enterprise 2004, DM, RM, SearchServer, DM WorkFlow, Imaging, KM, Enterprise
Webtop, Collaboration, Web Publishing, DOCSFusion, and DOCS Open are trademarks of
Hummingbird Ltd. and/or its subsidiaries. All other copyrights, trademarks, and trade names are the
property of their respective owners.

Your enclosed license agreement with Hummingbird Ltd. or one of its affiliates specifies the
permitted and prohibited uses of the product. Any unauthorized duplication or use of the product in
whole or part is strictly forbidden. No part of this document may be copied, reproduced, translated,
or transmitted in any form or by any means without the prior written consent of Hummingbird Ltd.

RESTRICTED RIGHTS LEGEND. Unpublished rights reserved under the copyright laws of the
United States and any other appropriate countries. The SOFTWARE is provided with restricted
rights. Use, duplications, or disclosure by the U.S. Government is subject to restriction as set forth in
subparagraph (c) of The Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013, and subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights clause at 48
CFR 52.227-19, as applicable, similar clauses in the FAR and NASA FAR Supplement, any successor
or similar regulation.

The information contained in this document is subject to change without notice. If this document is
provided in both printed and electronic form, the electronic form will govern in the event of any
inconsistency. Information in this document is subject to change without notice and does not
represent a commitment on the part of Hummingbird Ltd. Not all copyrights pertain to all products.

DISCLAIMER. Hummingbird Ltd. software and documentation have been tested and reviewed.
Nevertheless, Hummingbird Ltd. makes no warranty or representation, either express or implied,
with respect to the software and documentation included. In no event will Hummingbird Ltd. be
liable for direct, indirect, special, incidental, or consequential damages resulting from any defect in
the software or documentation included with these products. In particular, Hummingbird Ltd. shall
have no liability for any programs or data used with these products, including the cost of recovering
such programs or data.

Corporate Headquarters
1 Sparks Avenue, Toronto, Ontario
M2H 2W1 Canada
U.S./Canada Toll-free: 1 877 FLY HUMM (359 4866)
Tel: 1 416 496 2200, Fax: 1 416 496 2207, Website: www.hummingbird.com

http://www.hummingbird.com

C o n t e n t s
Chapter 1 Using COM Automation for Microsoft Word

About COM Automation for Microsoft Word 5

Supporting Software 6

New Functionality 6

Installing COM Automation for Microsoft Word 7

Create a Launch Method 7

Refresh DM Server Caches 10

Implement COM Automation for Word on User Workstations 10

Performing a Mail Merge in Word 12

Before You Begin 12

Selecting the Main Document 12

Creating a New Data Source in Word 13

Selecting a Saved Data Source 14

Opening a Native Data Source 15

Customizing the DM Footer with COM Automation 16

Microsoft Word Customized Footer Sample Code 18

Using Word’s AutoRecover Feature 24

Troubleshooting COM Automation for Word 25

Word Stops Responding 25

Auto-Recovery 25

Previous Integration Files Must Be Removed 25

COM Automation for Word Registry Setting 25

E-mail Integration 25

Chapter 2 Using COM Automation for Microsoft Excel

About COM Automation for Microsoft Excel 27

Supporting Software 28

New Functionality 28

Installing COM Automation for Microsoft Excel 29

Create a Launch Method 29
 1

Refresh DM Server Caches 31

Implement COM Automation for Excel on User Workstations 32

Customizing the DM Footer with COM Automation 34

Microsoft Excel Customized Footer Sample Code 35

Using Excel’s Auto-Recovery Feature 40

Troubleshooting COM Automation for Excel 41

Previous Integration Files Must Be Removed 41

Chapter 3 Using Microsoft Office Menu Shortcut Keys with COM Automation

Microsoft Office Intercepted Shortcut Keys 44

Word Intercepted Shortcut Keys 44

Excel Intercepted Shortcut Keys 45

Removing DM Menu Items 46

DM Intercepted Menu Items 46

Active Integration 46

Passive Integration 47

Chapter 4 DM Simplified API Technical Information

DM Simplified API 49

Technical Specifications 50

Functions 50

DM.OpenDoc 50

DM.CloseDoc 51

DM.SaveDoc 51

DM.SaveDocAs 52

DM.NewDoc 53

DM.IsDMDoc 53

DM.GetDocInfo 53

DM.Library 54

Sample Code 55

DM.OpenDoc 55

DM.CloseDoc 55

DM.SaveDoc 57
2

DM.SaveAs 58

DM.IsDMDoc 59

DM.GetDocInfo 60

Chapter 5 DM COM Add-in Programmer's Guide for Microsoft Word

DM_COM_Addin.clsWord.DMClose 62

DM_COM_Addin.clsWord.DMCompare 62

DM_COM_Addin.clsWord.DMCompareAndMerge 62

DM_COM_Addin.clsWord.DMExit 63

DM_COM_Addin.clsWord.DMFooter 63

DM_COM_Addin.clsWord.DMInsertFile 63

DM_COM_Addin.clsWord.DMInsertPicture 64

DM_COM_Addin.clsWord.DMNativeSave 64

DM_COM_Addin.clsWord.DMNativeSaveAs 65

DM_COM_Addin.clsWord.DMOpen 65

DM_COM_Addin.clsWord.DMPasswordProtect
Document 65

DM_COM_Addin.clsWord.DMPrint 66

DM_COM_Addin.clsWord.DMSave 66

DM_COM_Addin.clsWord. DMSaveAS 66

Sample Code 68

DM_COM_Addin.clsWord.DMClose 68

DM_COM_Addin.clsWord.DMCompare 68

DM_COM_Addin.clsWord.DMCompareAndMerge 69

DM_COM_Addin.clsWord.DMExit 69

DM_COM_Addin.clsWord.DMFooter 70

DM_COM_Addin.clsWord.DMInsertFile 70

DM_COM_Addin.clsWord.DMInsert Picture 71

DM_COM_Addin.clsWord.DMNative Save 71

DM_COM_Addin.clsWord.DMNative SaveAs 72

DM_COM_Addin.clsWord.DMOpen 72

DM_COM_Addin.clsWord.DMPasswordProtectDocument 73

DM_COM_Addin.clsWord.DMPrint 73
 3

DM_COM_Addin.clsWord.DMSave 74

DM_COM_Addin.clsWord.DMSaveAS 74

Chapter 6 DM COM Add-in Programmer's Guide for Microsoft Excel

DM_COM_ADDIN.clsExcel.DMClose 76

DM_COM_ADDIN.clsExcel.DMCloseWorkspace 76

DM_COM_ADDIN.clsExcel.DMExit 76

DM_COM_ADDIN.clsExcel.DMFooter 77

DM_COM_ADDIN.clsExcel.DMInsertPicture 77

DM_COM_ADDIN.clsExcel.DMNativeSave 77

DM_COM_ADDIN.clsExcel.DMNativeSaveAs 78

DM_COM_ADDIN.clsExcel.DMOpen 78

DM_COM_ADDIN.clsExcel.DMOpenVersion 79

DM_COM_ADDIN.clsExcel.DMPwdProtDoc 79

DM_COM_ADDIN.clsExcel.DMRestoreWorkspace 79

DM_COM_ADDIN.clsExcel.DMSave 79

DM_COM_ADDIN.clsExcel.DMSaveAS 80

DM_COM_ADDIN.clsExcel.DMSaveWorkspace 81

Sample Code 82

DM_COM_ADDIN. clsExcel.DMClose 82

DM_COM_ADDIN. clsExcel.DMClose Workspace 82

DM_COM_ADDIN.clsExcel.DMExit 83

DM_COM_ADDIN. clsExcel.DMFooter 83

DM_COM_ADDIN. clsExcel.DMInsert Picture 83

DM_COM_ADDIN. clsExcel.DMNativeSave 83

DM_COM_ADDIN. clsExcel.DMNativeSaveAs 84

DM_COM_ADDIN. clsExcel.DMOpen 85

DM_COM_ADDIN. clsExcel.DMOpen Version 85

DM_COM_ADDIN. clsExcel.DMPwd ProtDoc 85

DM_COM_ADDIN. clsExcel.DM RestoreWorkspace 85

DM_COM_ADDIN. clsExcel.DMSave 86

DM_COM_ADDIN. clsExcel.DMSaveAS 86

DM_COM_ADDIN. clsExcel.DMSave Workspace 87
4

C h a p t e r

1

Using COM Automation for

Microsoft Word

About COM Automation for Microsoft Word

COM Automation for Microsoft Word uses a Microsoft Office COM
Add-in to provide active and passive integration with DM. This add-in
is meant to remove the dependency on Microsoft's built-in ODMA
implementation. The add-in communicates with DM through DM-
managed COM interfaces and has no reliance on ODMA.

If you are using any customized items for Word (templates, VBA macros, Word
add-ins), third-party add-ons, or other applications that depend on the Word
ODMA implementation, then you should contact Technical Support before
using Word Active COM Add-in integration.

This chapter contains the following sections:

• Installing COM Automation for Microsoft Word

• Performing a Mail Merge in Word

• Customizing the DM Footer with COM Automation
• Using Word’s AutoRecover Feature

• Troubleshooting COM Automation for Word
USING COM AUTOMATION FOR MICROSOFT WORD 5

Supporting
Software

COM Automation for Microsoft Word is supported with DM 5.1.0.5
Service Release 5 and later.

This feature is supported for the following versions of Microsoft Word:

• Word 2000 SP3

• Word XP SP3

• Word 2003 SP2

New Functionality • Performance enhancements, especially in startup.

• Ability to use Word as an e-mail editor.

• The DM mail merge function has been rewritten. Refer to
Performing a Mail Merge in Word for instructions.

• A new Password Confirmation dialog box prompts you to
enter the document’s password when you select File>Save
With Options.

• A new Insert>Footer menu option has been added for Active
integration. A new DM>Footer menu item has been added for
Passive integration.

Refer to the Customizing the DM Footer with COM
Automation section for more information.

• Word’s AutoRecover feature is integrated with DM. See
Using Word’s AutoRecover Feature for more information.
6 CHAPTER 1

Installing COM Automation for Microsoft Word

Create a Launch
Method

You can create a launch method through DM Webtop or by using the
Library Maintenance tool, which is accessible on the DM server
computer or any computer where the Server Admin Tools are installed.

Creating a Launch Method in DM Webtop

Following are instructions on how to create a launch method in DM
Webtop.

To create a launch method in DM Webtop:

1. Click DM Admin>Validation Table>Applications.

2. Click MS WORD to display the settings for Microsoft Word.

3. Click Launch Methods.

4. Click Add. (Alternatively, you can click Copy and modify an
existing launch method.)

5. In the Description field, enter Microsoft Word COM
Automation (Active/Passive Integration).

6. In the Location field, enter the path where the winword.exe
executable is located.

7. Enter the following launch method settings:

Leave the Command Line Parameters field blank to make
Microsoft Word open with a blank document. The /ND
setting, which indicates “no document,” is typically used
when Front End Profiling is enabled.

8. Select the Enabled check box.

9. Select DDE Settings. You will be prompted to save the changes
to the launch method.

10. Enter the DDE Settings as follows:

Open Settings:

Command Line Parameters /ND

Integration Type Full Integration

Application Name WINWORD
USING COM AUTOMATION FOR MICROSOFT WORD 7

Print Settings:

11. Click Save and Close to complete the launch method for
COM Automation for Microsoft Word.

12. Select Save again to save the application settings for
Microsoft Word.

Creating a Launch Method in Library Maintenance

Following are instructions on how to create the launch method in
Library Maintenance.

To create a launch method in Library Maintenance:

1. Click Start>Programs>Hummingbird>DM Server>Server Admin
Tools>Library Maintenance.

2. Click Applications.

3. Double-click MS WORD.

4. In the Application Maintenance window, click Launch
Methods.

5. In the Application Launch Methods window, click Copy.

6. Enter the following information:

Enabled: Ensure that this check box is selected.

Description: Enter a description for the launch method, such
as COM Automation for Microsoft Word
(Active/Passive).

Location: Ensure that the location to the winword.exe
executable file is specified.

Topic Name SYSTEM

Command [DDE.DDEOpen("%1")]

Command (not running) [DDE.DDEOpen("%1")]

Application Name WINWORD

Topic Name SYSTEM

Command [DDE.DDEPrint ("%1", "1")]

Command (not running) [DDE.DDEPrint ("%1", "0")]
8 CHAPTER 1

Command Line Parameters: Leave the Command Line Parameters
field blank to make Microsoft Word open with a blank
document, or enter /ND, which indicates to open with “no
document.”

Default Directory: Leave this field blank.

Search Mapping: Leave this field blank.

Integration: Select Full Integration.

7. Click Apply; the DDE Settings button becomes available.

8. Click DDE Settings; ensure that the DDE settings match the
settings specified below:

Open Settings:

Print Settings:

9. Click Close.

10. Click OK in the Application Launch Methods window.

11. Click Close.

12. Click the Options button from the Application Maintenance
dialog box.

13. Ensure that the Shows on Desktop and Valid on Profile check
boxes are selected; click OK.

14. Click OK; the launch method for COM Automation for
Word is now complete.

Application Name WINWORD

Topic Name SYSTEM

Command [DDE.DDEOpen("%1")]

Command (not running) [DDE.DDEOpen("%1")]

Application Name WINWORD

Topic Name SYSTEM

Command [DDE.DDEPrint ("%1", "1")]

Command (not running) [DDE.DDEPrint ("%1", "0")]
USING COM AUTOMATION FOR MICROSOFT WORD 9

Refresh DM Server
Caches

After you create the launch method for COM Automation for
Microsoft Word, you must refresh the DM Server caches. On the DM
Server machine, go to the Server Manager’s Caches tab and select Refresh
All.

Implement COM
Automation for

Word on User
Workstations

You can install the COM Automation Add-in for Word from DM
Webtop or by using the DM Extensions Server Setup. Instructions
follow for both methods.

Using DM Extensions Server Setup

To implement COM Automation for Microsoft Word in DM
Extensions Server Setup:

1. Click Start>Programs>Hummingbird>DM Extensions Server
Setup>Install DM Extensions; the Installation Wizard appears
and the installation begins.

2. Accept the default location specified to install the media, or
click Browse to enter an alternation location; click Next.

If you have already installed DM Extensions, select the
Modify option, click Next, and skip to step 4 below.

3. In the Choose Destination Location window, accept the
default Destination Folder in which to install DM
Extensions, or click the Browse button to specify an
alternate location; click Next.

4. The Select Optional Components window appears; click the
DM Application Integration plus (+) sign to expand the tree.

5. Expand the Microsoft Applications tree.

6. Expand the Microsoft Word tree.

7. Expand the Microsoft Word Active Integration tree.

8. Expand the via COM Automation tree.

9. Select one of the following check boxes:

• with Front-End Profiling

• with Front-End Profiling and Cost Recovery

• Active Integration without Front-End Profiling

If you want to install COM Automation using Passive
integration, in step 7, expand the Microsoft Word Passive
Integration tree, and then click the via COM Automation check
box.
10 CHAPTER 1

10. Click Next.

11. In the Connection Information window, enter then
machine name of the DM Server, or click Browse to locate
the DM Server; then click Next.

12. The Start Copying Files window appears; click Next to start
the installation.

13. When the installation is complete, click Finish.

Using DM Webtop

To implement COM Automation for Microsoft Word in DM Webtop:

1. In DM Webtop, click My Options.

2. Click the Optional Components tab.

3. Click the Install icon; the Installation Wizard appears.

4. Accept the default location specified to install the media, or
click Browse to enter an alternation location; click Next.

If you have already installed DM Extensions, select the
Modify option, click Next, and skip to step 6 below.

5. In the Choose Destination Location window, accept the
default Destination Folder in which to install DM
Extensions, or click the Browse button to specify an
alternate location; click Next.

6. The Select Optional Components window appears; click the
DM Application Integration plus (+) sign to expand the tree.

7. Expand the Microsoft Applications tree.

8. Expand the Microsoft Word tree.

9. Expand the Microsoft Word Active Integration tree.

10. Expand the via COM Automation tree.

11. Select one of the following check boxes:

• with Front-End Profiling

• with Front-End Profiling and Cost Recovery

• Active Integration without Front-End Profiling

If you want to install COM Automation using Passive
integration, in step 9, expand the Microsoft Word Passive
Integration tree, and then click the via COM Automation check
box.

12. Click Next.
USING COM AUTOMATION FOR MICROSOFT WORD 11

13. If the Connection Information window appears, enter then
machine name of the DM Server, or click Browse to locate
the DM Server; then click Next.

14. The Start Copying Files window appears; click Next to start
the installation.

15. When the installation is complete, click Finish.

Performing a Mail Merge in Word

When using either Active or Passive Integration for Microsoft Word,
use the steps below to perform a mail merge operation. You must
enable a default launch method to use this feature; otherwise, the mail
merge process will not work correctly.

Before You Begin If you will not be using an existing document for a data source, you
should create a data source before beginning the mail merge operation.
Compatible data sources include outside data sources such as Excel
worksheets, delineated text files, or Outlook Contacts export files. Refer
to Microsoft Word help for a full list of compatible data sources.

You can create a data source in Word or use a saved data source. Word
data sources are created during the merge process. Refer to Opening a
Native Data Source for more information.

Selecting the Main
Document

The first step in starting the mail merge is to select a Main Document.

To select a Main Document:

1. Start Microsoft Word.

2. Select View>Toolbars>Mail Merge to display the Mail Merge
toolbar, if not already visible.

3. Select the appropriate menu command depending on your
version of Word:

Word Version Active Integration Passive Integration

Word 2000 Tools>DM Mail Merge DM>Mail Merge

Word XP and 2003 Tools>Letters and Mailings>
DM Mail Merge

DM>Mail Merge
12 CHAPTER 1

The Hummingbird DM Mail Merge dialog box appears.

4. If you want to open a saved document, click Select Main
Document. (If you are not already logged on to DM, you will
be prompted to do so.) The Quick Retrieve dialog box
appears, in which you can select a valid mail merge Main
Document.

Select a valid mail-merge Main Document and click OK.

5. If you want to use the document that is currently open,
click Use Current Document; the active document is set as the
Main Document.

6. The next step is to select a data source containing the
information that will populate the data fields in your
document. Continue with one of the following procedures:

Creating a New Data Source in Word

Selecting a Saved Data Source

Opening a Native Data Source

Creating a New
Data Source in

Word

To create a new data source:

1. Perform the steps in the Selecting the Main Document
section.

2. In the Mail Merge Helper, click Select Data Source; a Quick
Retrieve dialog box appears.

3. Click Cancel to display the Microsoft Word Mail Merge Helper
dialog box.

4. Under Data Source, click Get Data>Create Data Source.

5. In the Create Data Source dialog box, specify the fields to be
included in the data source.

6. When you have completed selecting the fields, click OK.

7. Save the data source to DM or locally.

8. After the document is saved, a Word message appears,
stating that the data source is blank; select Edit Data Source.

9. The data source document will appear; enter data in all of
the fields.

10. When you have completed entering data, save the
document.
USING COM AUTOMATION FOR MICROSOFT WORD 13

11. In the Main Document, click Insert Merge Field on the
Mail Merge toolbar anywhere that you want to insert a field.
If necessary, click Insert Word Field to place fields such as
<<Next Record>>, etc.

12. Complete any formatting in the Main Document.

13. Click Merge Helper.

14. On the Mail Merge toolbar, click one of the following
options: Merge to a New document, Merge to Printer, or Merge
to E-mail.

You will need to select which records to be used to complete
the merge. When merging to an e-mail, you will need to
select the field to be used as the e-mail address, enter a
subject and select the e-mail format.

15. Click OK; the merged output is created.

16. If you selected to merge to a new document, you can select
File>Save As to profile the document in DM.

Selecting a Saved
Data Source

To select a saved data source:

1. Perform the steps in the Selecting the Main Document
section.

2. In the Mail Merge Helper, click Select Data Source; a Quick
Retrieve dialog box appears.

3. Select the previously saved data source file and click OK.

You can select another Word document, Excel workbook or other
profiled document that is a compatible data source for a Microsoft
Word mail merge.

4. Select the correct document version and click OK.

5. Depending on the type of data source selected, you might
be prompted to confirm the type of data source. Select the
data source type and click OK.

6. For Excel spreadsheets, you might be prompted to indicate
which part of your spreadsheet you want to select. Select an
item (or group of items) and click OK.

7. In the main document, click Insert Merge Field on the
Merge toolbar to insert the fields. If necessary, click Insert
Word Field to place fields such as <<Next Record>>, etc.

8. Complete any formatting in the Main Document.
14 CHAPTER 1

9. Press ALT+Tab to open the Hummingbird DM Mail Merge
dialog box.

10. Click Merge Helper; the Microsoft Word Mail Merge Helper
dialog box appears with the Main Document and Data
Source fields populated with the documents you selected.

If you want to edit your Main Document and/or Data
Source, click Edit next to the desired document. If you edit
either document and choose to save your changes, the
documents are uploaded to DM; however, this is valid for
Word data sources only.

When you edit either document, in order to display the
Merge Helper dialog box and continue with the merge, click
Merge Helper on the Hummingbird DM Mail Merge dialog
box.

11. Click Merge; the Merge dialog box appears.

12. Under Merge to, select one of the following options: New
Document, Printer or Electronic Mail. Alternately, on the Mail
Merge toolbar, select the Merge to a New document, a Merge to
Printer, or Merge to E-mail toolbar button.

You will need to select which records to be used to complete
the merge. When merging to an e-mail, you will need to
select the field to be used as the e-mail address, enter a
subject and select the mail format.

13. Click OK; the merged output is created. If you selected the
New Document option, you can select File>Save As to profile
the document in DM.

Opening a Native
Data Source

Native data sources can include any compatible data source file that
have not been profiled and saved in a DM library. These can include
Excel workbooks, Access databases files, delimited text files and many
more.

To open a native data source:

1. Perform the steps in the Selecting the Main Document
section.

2. In the Mail Merge Helper, click Select Data Source; a Quick
Retrieve dialog box appears.

3. Click Cancel to display the Mail Merge Helper dialog box.
USING COM AUTOMATION FOR MICROSOFT WORD 15

4. Under Step 1, Main Document, select Create and choose the
document type you will be creating (Form Letters, Mailing
Labels, etc.).

5. Under the Data source drop-down list, click Get Data
Source>Open Data Source.

6. A native Open Data Source dialog box appears; select the
document type from the Files of type drop-down box.

Locate and select a natively-saved data source document
that contains data fields you want to insert in the main
document and click Open.

7. Depending on the type of data source selected, you might
be prompted to confirm the type of data source. Select the
data source type and click OK.

8. For Excel spreadsheets, you might be prompted to indicate
which part of your spreadsheet you want to select; select an
item (or group of items) and click OK.

9. Select Edit the Main Document.

10. In the main document, click Insert Merge Field on the
Merge toolbar to insert the fields. If necessary, click Insert
Word Field to place fields such as <<Next Record>>, etc.

11. Complete any formatting in the main document.

12. On the Mail Merge toolbar, click one of the following
options: Merge to a New document, Merge to Printer, or Merge
to E-mail.

You will need to select which records to be used to complete
the merge. When merging to an e-mail, you will need to
select the field to be used as the e-mail address, enter a
subject and select the mail format.

13. Click OK; the merged output is created. If you selected the
New Document option, you can select File>Save As to profile
the document in DM.

Customizing the DM Footer with COM Automation

You might have customized Word footers based on DM’s macro
functions, which are built upon ODMA. Because COM Automation
does not use ODMA, these particular customizations will no longer
16 CHAPTER 1

work; however, you can customize Word footers using COM
Automation. You should be familiar with Visual Basic for Applications
(VBA) and the Microsoft VBA editor before performing the following
steps.

To create a custom Word footer using COM Automation:

1. Open Microsoft Word.

2. If a blank document does not appear, create one by selecting
File>New.

3. Save the document as a Document Template (*.dot) to the
local file system. The name should not conflict with any
other macro file names, such as normal.dot. Do not save the
document in any of the Word Startup directories, as this
will prevent the document being edited using the Microsoft
VBA editor.

4. Open the Microsoft VBA editor by pressing ALT+F11 or by
selecting Tools>Macros>Visual Basic Editor.

5. In the VBA Project Explorer, select the project containing
the current document.

6. Right-click the Modules node below this project and select
Insert>Module.

7. In the Properties window, rename the module. Ensure that
the file name does not conflict with any other file names.

8. Add a Public subroutine; the name of the subroutine can be
anything that VBA allows and does not conflict with other
names.

9. In this subroutine, add your custom code that will insert the
desired information into the footer. The process of inserting
the footer information involves calls to the Microsoft Word
object model. Depending on what you want inserted into
the footer, the subroutine might also contain calls to the
DM API, the DM Extensions API, other third-party APIs,
and VBA functions. Refer to Microsoft Word Customized
Footer Sample Code for more information.

10. From the VBA editor menu, select File>Save.

11. Select File>Close; focus returns to Word.

12. From the Word menu, select File>Exit.

13. Copy the .dot file to one of the Word Startup directories.
USING COM AUTOMATION FOR MICROSOFT WORD 17

The per-user Word Startup directory is located in
C:\Documents and Settings\<user_name>\Application
Data\Microsoft\Word\STARTUP. You must manage your
Word security settings to allow this macro to run.

14.Select Start>Run, type REGEDIT, and then click OK; the
Registry Editor opens.

You can also create a registry import file, as described in
the sample code below.

15.Create a name-value pair of type REG_SZ below the
following registry key:
HKEY_CURRENT_USER\Software\Microsoft\Office

\Word\Addins\

DM_COM_Addin.WordAddin.

16.Name the name-value pair EventBeforeFooter. This
name is case-specific. The value of the name-value pair is
the name of the module you created, followed by a period,
which is then followed by the name of the subroutine you
created. The module name and the subroutine name are
also case-specific.

17.Ensure that all instances of Word are closed.

18.Restart DM.

19.Open Word, create a document, and save it to DM.

20.From the Word menu, select Insert>Footer; your custom
footer information will appear.

Microsoft Word
Customized Footer

Sample Code

The following code example demonstrates how you can customize the
footer with COM Automation. This code resides in a module named
moduleDMEventCode, which is located in a Word template file named
footer.dot, located in the user’s Word Startup directory.

' FILE NAME: footer.dot

' FILE LOCATION: per-use Word Startup directory

' MODULE NAME: moduleDMEventCode

' Purpose:

' This module defines a custom subroutine that is called
by

' DM when the user selects Insert>DM Footer from the Word
menu.

' The subroutine inserts customized information into the
footer.
18 CHAPTER 1

' To make the following code work, place the following 4
lines

' of text (minus the comment (') marks) into a .reg file
and

' run it.

'Windows Registry Editor Version 5.00

'

'[HKEY_CURRENT_USER\Software\Microsoft\Office\Word\Addins
\DM_COM_Addin.
WordAddin]

'"EventBeforeFooter"="moduleDMEventCode.subEventBeforeFoo
ter"

Public Sub subEventBeforeFooter()

' This subroutine is called by DM when the Insert>DM
Footer

' menu item is clicked in Word.

' The DM code that normally inserts the footer is not
called,

' i.e. this code replaces that code.

'

' Collect the information intended for the footer.

Dim strFooterText As String

strFooterText = get_footer_information()

' Insert the information into the footer.

insert_footer strFooterText

End Sub

Private Sub insert_footer(strFooterText As String)

Dim footer_selection As Selection

Dim initial_active_window_view_type As Integer

initial_active_window_view_type =
ActiveWindow.View.Type

Application.EnableCancelKey = wdCancelDisabled

If (ActiveWindow.View.SplitSpecial = wdPaneNone) Then

ActiveWindow.ActivePane.View.Type = wdPageView

Else

ActiveWindow.View.Type = wdPageView

End If

ActiveWindow.View.SeekView = wdSeekMainDocument

ActiveWindow.View.SeekView = wdSeekPrimaryFooter

ActiveDocument.Sections(1).Footers(wdHeaderFooterPrima
ry)._

Shapes.SelectAll

Set footer_selection = ActiveWindow.Selection

' Set the footer text to the sole parameter of this
function.

footer_selection.Text = strFooterText

ActiveWindow.View.Type = wdPageView

ActiveDocument.Sections(1).Footers(wdHeaderFooterPrima
ry)._

Range = footer_selection.Range
USING COM AUTOMATION FOR MICROSOFT WORD 19

footer_selection.Paragraphs.Alignment =
wdAlignParagraphLeft

ActiveWindow.View.Type = wdNormalView

ActiveWindow.View.Type =
initial_active_window_view_type

Word.StatusBar = ""

Application.EnableCancelKey = wdCancelInterrupt

End Sub

Private Function get_footer_information() As String

Dim strFooterText As String

Dim objDOCSObjectsDM As Object

Dim strActiveDocumentFullName As String

Dim out_strValue As String

Dim strDocumentName As String

Dim strAuthorID As String

Dim strDocumentNumber As String

Dim strAbstract As String

Dim strForm As String

Dim strTypeID As String

Dim strCreationDate As String

Dim strLastEditDate As String

Dim strClientName As String

Dim strMatterName As String

Dim strClientID As String

Dim strMatterID As String

Dim strVersionNumber As String

strActiveDocumentFullName = ActiveDocument.FullName

Set objDOCSObjectsDM = CreateObject("DOCSObjects.DM")

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"DOCNAME", out_strValue

strDocumentName = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"AUTHOR_ID", out_strValue

strAuthorID = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"DOCNUM", out_strValue

strDocumentNumber = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"ABSTRACT", out_strValue

strAbstract = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"TYPE_ID", out_strValue

strTypeID = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"CREATION_DATE", out_strValue

strCreationDate = out_strValue
20 CHAPTER 1

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"LASTEDITDATE", out_strValue

strLastEditDate = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"CLIENT_NAME", out_strValue

strClientName = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"CLIENT_ID", out_strValue

strClientID = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"FORM", out_strValue

strForm = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"MATTER_NAME", out_strValue

strMatterName = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"MATTER_ID", out_strValue

strMatterID = out_strValue

strVersionNumber = _

get_version_number(strActiveDocumentFullName)

strFooterText = ""

' Comment out any of the following lines to remove

' information from the footer.

' You may also re-order the lines below.

' BEGIN LINES WHICH MAY BE COMMENTED OUT OR RE-ORDERED

strFooterText = strFooterText & "Document Name: " & _

strDocumentName & vbNewLine

strFooterText = strFooterText & "Document Number: " &
_

strDocumentNumber & vbNewLine

strFooterText = strFooterText & "Version: " &
strVersionNumber _

& vbNewLine

strFooterText = strFooterText & "Author: " &
strAuthorID & _

vbNewLine

strFooterText = strFooterText & "Abstract: " &
strAbstract & _

vbNewLine

strFooterText = strFooterText & "Form: " & strForm &
vbNewLine

strFooterText = strFooterText & "TypeID: " & strTypeID
& _

vbNewLine

strFooterText = strFooterText & "Creation Date: " & _

strCreationDate & vbNewLine

strFooterText = strFooterText & "Last Edit Date: " & _
USING COM AUTOMATION FOR MICROSOFT WORD 21

strLastEditDate & vbNewLine

strFooterText = strFooterText & "Client Name: " & _

strClientName & vbNewLine

strFooterText = strFooterText & "Client ID: " &
strClientID _

& vbNewLine

strFooterText = strFooterText & "Matter Name: " & _

strMatterName & vbNewLine

strFooterText = strFooterText & "Matter ID: " &
strMatterID _

& vbNewLine

' END LINES WHICH MAY BE COMMENTED OUT OR RE-ORDERED

get_footer_information = strFooterText

End Function

Private Function get_version_number _

(strActiveDocumentFullName As String) As String

Dim strVersionNumber As String

Dim objRegExp As Object

Dim objMatches, objMatch As Object

Dim strMatchValue As String

strVersionNumber = ""

Set objRegExp = CreateObject("VBScript.RegExp")

objRegExp.Global = True

' The following regular expression looks for the

' following pattern:

' 1 non-alphanumeric character

' followed by

' 1 letter 'v', either upper or lower case

' followed by

' 1 or more decimal digits

' followed by

' 1 non-alphanumeric character

' Examples of matching patterns:

' _v1_

' _V11_

' -V23-

' -v17-

' Thus, it catches the version number regardless of the

' delimiter used to delimit

' the various parts of a DM file name.

objRegExp.Pattern = "[^a-zA-Z0-9][vV][0-9]+[^a-zA-Z0-
9]"

Set objMatches =
objRegExp.Execute(strActiveDocumentFullName)

' The matches count will normally be one. For it to be

' different would generally require that the DM
Administrator

' had made a change to how DM names files.

If objMatches.Count = 0 Then

strVersionNumber = "<UNDEFINED>"
22 CHAPTER 1

Else

' By default, and under normal circumstances, their

' should be only one match object. The exceptions
will

' be in those situations where the author's id, the

' library name, or the document name (or some other

' value added to the document naming scheme by the

' DM Administrator) contains a string that matches

' the regular expression above (e.g. where the

' document name is "automobile_v8_engines"). If
this

' is an issue, perform further expression testing
to ensure

' that this function returns the version number.

Set objMatch = objMatches.Item(0)

strMatchValue = objMatch.Value

strVersionNumber = Left(strMatchValue,
Len(strMatchValue) - 1)

strVersionNumber = Right(strVersionNumber,
Len(strVersionNumber) _

 - 2)

End If

get_version_number = strVersionNumber

End Function
USING COM AUTOMATION FOR MICROSOFT WORD 23

Using Word’s AutoRecover Feature

If a system failure occurs and Word autorecovers the document, the file
will be saved as a DM document.

• Word 2003 or XP: When you start Word after the system failure,
you can choose to open the last-saved document or the
autorecovered document.

• Word 2000: When you start Word after the system failure, the
autorecovered document is opened.

If you choose to save the recovered document, you can select from one
of the following options:

• Replace the existing last-saved document.

• Save the document as a new document.

• Save the document as a new version or subversion.

In order for the Word AutoRecover feature to work properly, you must
disable the DM Auto-Recovery function in the the following registry
key:
[HKEY_CURRENT_USER\Software\Hummingbird\PowerDOCS\Cor

e\

Plugins\Fusion\OM\Excludes]

Ensure that the following value is set:

"MS WORD"=dword:00000001
24 CHAPTER 1

Troubleshooting COM Automation for Word

Should troubleshooting be necessary, a log file can be created in the DM
Extensions directory after you enable the log file in the following
registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Hummingbird\Hummingbird
DM Application Integration\Installation\Microsoft

Create a new DWord value with the following values:

Name: Debug

Value: 2

Word Stops
Responding

Ensure that Microsoft Office SP3 is installed for Word 2000; otherwise,
Word will stop responding when you open documents from DM.

Auto-Recovery Auto-Recovery integration is enabled for Word XP and later versions. If
you want to ensure that this feature is working, open an already-saved
document in DM and then open Windows Task Manager to end the
winword.exe process.

Previous
Integration Files

Must Be Removed

Ensure that previous DM integration files are removed from Word’s
Startup directory before using COM Automation; otherwise, both
integration files will be loaded and the integration will fail.

COM Automation
for Word Registry

Setting

The following registry entry is made when the DLL is registered:
HKEY_CURRENT_USER\Software\Microsoft\Office\Word\

Addins\Office_COM_Addin.WordAddin

To remove integration, delete the Office_COM_Addin.WordAddin
registry key.

E-mail Integration When you use Word as the e-mail editor, you will be able to use all the
DM menus and functions that are available in Active Word integration.

DM does not maintain a link with the e-mail document, so if you save
the e-mail to DM, the document is uploaded and available
immediately. If you edit the document and select File>Save, a new Profile
form will appear.

Some e-mails cannot be saved to DM as they have HTML or Rich Text
Format (RTF) format types. If you select File>Save As, a native dialog box
USING COM AUTOMATION FOR MICROSOFT WORD 25

will appear; however, if you click the Reply button, then Word starts and
the e-mail can be saved to DM.

Saving to the Drafts Folder

If you create a new e-mail and then decide to save it before sending it by
choosing File>Save to save it to Drafts folder, a Profile form appears
instead. In order to save it to the Drafts folder you have to select
File>Close.
26 CHAPTER 1

C h a p t e r

2

Using COM Automation for

Microsoft Excel

About COM Automation for Microsoft Excel

COM Automation for Microsoft Excel uses a Microsoft Office COM
Add-in to provide active and passive integration with DM. This add-in
is meant to remove the dependency on Microsoft's built-in ODMA
implementation. The add-in communicates with DM through DM-
managed COM interfaces and has no reliance on ODMA.

If you are using any customized items for Microsoft Excel (templates, VBA
macros, Excel add-ins), third-party add-ons, or other applications that have a
dependency on the Excel ODMA implementation, then you should contact
Technical Support before using the Excel Active COM Add-in integration.

This chapter contains the following sections:

• Installing COM Automation for Microsoft Excel

• Customizing the DM Footer with COM Automation

• Using Excel’s Auto-Recovery Feature

• Troubleshooting COM Automation for Excel
USING COM AUTOMATION FOR MICROSOFT EXCEL 27

Supporting
Software

COM Automation for Microsoft Excel is supported with DM 5.1.0.5
Service Release 5 and later.

This feature is supported for the following versions of Microsoft Excel:

• Excel 2000 SP3

• Excel XP SP3

• Excel 2003 SP2

New Functionality • The XClose command is available, which means you can
close Excel by clicking the X (Close) button.

• The Ctrl+S keystroke combination saves correctly when in
edit cell mode.

• A new Insert>Footer menu option is added for Active
integration. A new DM>Footer menu option has been added
for Passive integration.

Refer to Customizing the DM Footer with COM
Automation for more information about creating Excel
footers.

• Excel’s Auto-Recovery feature has been integrated so that a
Save As Options dialog box appears if Excel stops
responding when you save a workbook. Consult the Using
Excel’s Auto-Recovery Feature section for more
information.
28 CHAPTER 2

Installing COM Automation for Microsoft Excel

Create a Launch
Method

You can create a launch method through DM Webtop or by using the
Library Maintenance tool, which is accessible on the DM server
computer or any computer where the Server Admin Tools are installed.

Creating a Launch Method in Library Maintenance

Following are instructions on how to create the launch method in
Library Maintenance.

To create a launch method in Library Maintenance:

1. Click Start>Programs>Hummingbird>DM Server>Server Admin
Tools>Library Maintenance.

2. Click Applications.

3. Double-click MS EXCEL.

4. In the Application Maintenance window, click Launch
Methods.

5. In the Application Launch Methods window, click Copy.

6. Enter the following information:

Enabled: Ensure that this check box is selected.

Description: Enter a description for the launch method, such
as COM Automation for Microsoft Excel
(Active/Passive).

Location: Ensure that the location to the excel.exe executable
file is specified.

Command Line Parameters: Leave the Command Line Parameters
field blank.

Default Directory: Leave this field blank.

Search Mapping: Leave this field blank.

Integration: Select Full Integration.

7. Click Apply; the DDE Settings button becomes available.

8. Click DDE Settings; ensure that the DDE settings match the
settings specified below:

Open Settings:

Application Name EXCEL
USING COM AUTOMATION FOR MICROSOFT EXCEL 29

 Print Settings:

9. Click Close.

10. Click OK in the Application Launch Methods window.

11. Click Close.

12. Click the Options button from the Application Maintenance
dialog box.

13. Ensure that the Shows on Desktop and Valid on Profile check
boxes are selected; click OK.

14. Click OK; the launch method for COM Automation for
Excel is now complete.

Creating a Launch Method in DM Webtop

Following are instructions on how to create a launch method in DM
Webtop.

To create a launch method in DM Webtop:

1. Click DM Admin>Validation Table>Applications.

2. Click MS EXCEL to display the settings for Microsoft Excel.

3. Click Launch Methods.

4. Click Add. (Alternatively, you can click Copy and modify an
existing launch method.)

5. In the Description field, enter Microsoft Excel COM
Automation (Active/Passive Integration).

6. In the Location field, enter the path where the excel.exe
executable is located.

Topic Name SYSTEM

Command [RUN("'DDEOpen ""%1""'")]

Command (not running) [RUN("'DDEOpen ""%1""'")]

Application Name EXCEL

Topic Name SYSTEM

Command [RUN("'DDEPrint ""%1"", ""1""'")]

Command (not running) [RUN("'DDEPrint ""%1"", ""0""'")]
30 CHAPTER 2

7. Enter the following launch method settings:

8. Select the Enabled check box.

9. Select DDE Settings. You will be prompted to save the changes
to the launch method.

10. Enter the DDE Settings as follows:

Open Settings:

Print Settings:

11. Click Save and Close to complete creation of the launch
method for COM Automation for Microsoft Excel.

12. Select Save again to save the application settings for
Microsoft Excel.

Refresh DM Server
Caches

After you create the launch method for COM Automation for
Microsoft Excel, you must refresh the DM Server caches. On the DM
Server machine, go to the Server Manager’s Caches tab and select Refresh
All.

Command Line Parameters Leave this field blank.

Integration Type Full Integration

Application Name EXCEL

Topic Name SYSTEM

Command [RUN("'DDEOpen ""%1""'")]

Command (not running) [RUN("'DDEOpen ""%1""'")]

Application Name EXCEL

Topic Name SYSTEM

Command [RUN("'DDEPrint ""%1"", ""1""'")]

Command (not running) [RUN("'DDEPrint ""%1"", ""0""'")]
USING COM AUTOMATION FOR MICROSOFT EXCEL 31

Implement COM
Automation for

Excel on User
Workstations

You can install the COM Automation Add-in for Excel from DM
Webtop or by using the DM Extensions Server Setup. Following are
instructions for both methods.

Using DM Extensions Server Setup

To implement COM Automation for Microsoft Excel in DM
Extensions Server Setup:

1. Click Start>Programs>Hummingbird>DM Extensions Server
Setup>Install DM Extensions; the Installation Wizard appears
and the installation begins.

2. Accept the default location specified to install the media, or
click Browse to enter an alternation location; click Next.

If you have already installed DM Extensions, select the
Modify option, click Next, and skip to step 4 below.

3. In the Choose Destination Location window, accept the
default Destination Folder in which to install DM
Extensions, or click the Browse button to specify an
alternate location; click Next.

4. The Select Optional Components window appears; click the
DM Application Integration plus (+) sign to expand the tree.

5. Expand the Microsoft Applications tree.

6. Expand the Microsoft Excel tree.

7. Expand the Microsoft Excel Active Integration tree.

8. Expand the via COM Automation tree.

9. Select one of the following check boxes:

• with Front-End Profiling

• with Front-End Profiling and Cost Recovery

• Active Integration without Front-End Profiling

If you want to install COM Automation using Passive
integration, in step 7, expand the Microsoft Excel Passive
Integration tree, and then click the via COM Automation check
box.

10. Click Next.

11. In the Connection Information window, enter then
machine name of the DM Server, or click Browse to locate
the DM Server; then click Next.
32 CHAPTER 2

12. The Start Copying Files window appears; click Next to start
the installation.

13. When the installation is complete, click Finish.

Using DM Webtop

To implement COM Automation for Microsoft Excel in DM Webtop:

1. In DM Webtop, click My Options.

2. Click the Optional Components tab.

3. Click the Install icon; the Installation Wizard appears and
the installation begins.

4. Accept the default location specified to install the media, or
click Browse to enter an alternation location; click Next.

If you have already installed DM Extensions, select the
Modify option, click Next, and skip to step 6 below.

5. In the Choose Destination Location window, accept the
default Destination Folder in which to install DM
Extensions, or click the Browse button to specify an
alternate location; click Next.

6. The Select Optional Components window appears; click the
DM Application Integration plus (+) sign to expand the tree.

7. Expand the Microsoft Applications tree.

8. Expand the Microsoft Excel tree.

9. Expand the Microsoft Excel Active Integration tree.

10. Expand the via COM Automation tree.

11. Select one of the following check boxes:

• with Front-End Profiling

• with Front-End Profiling and Cost Recovery

• Active Integration without Front-End Profiling

If you want to install COM Automation using Passive
integration, in step 9, expand the Microsoft Excel Passive
Integration tree, and then click the via COM Automation check
box.

12. Click Next.

13. If the Connection Information window appears, enter then
machine name of the DM Server, or click Browse to locate
the DM Server, and then click Next.
USING COM AUTOMATION FOR MICROSOFT EXCEL 33

14. The Start Copying Files window appears; click Next to start
the installation.

15. When the installation is complete, click Finish.

Customizing the DM Footer with COM Automation

You might have customized Excel footers based on DM’s macro
functions, which are built upon ODMA. Because COM Automation
does not use ODMA, these particular customizations will no longer
work; however, you can customize Excel footers with COM
Automation. You should be familiar with Visual Basic for Applications
(VBA) and the Microsoft VBA editor before performing the following
steps.

To create a custom Excel footer using COM Automation:

1. Open Microsoft Excel.

2. Open the Microsoft VBA editor by pressing ALT+F11 or by
selecting Tools>Macros>Visual Basic Editor.

3. Select File>Save and save the document locally as an Excel
Add-in (*.xla). The name should not conflict with any
other macro file names.

4. In the VBA Project Explorer, select the project containing
the current workbook.

5. Right-click the Modules node below this project and select
Insert>Module.

6. In the Properties window, rename the module. Ensure that
the file name does not conflict with any other file names.

7. Add a Public subroutine; the name of the subroutine can be
anything that VBA allows and does not conflict with other
names. The subroutine must take only one argument and
that argument must be of the type workbook. The name of
the argument can be anything allowed by VBA that does
not conflict with other variable names.

8. In this subroutine, add your custom code that will insert
the desired information into the footer. The process of
inserting the footer information involves calls to the
Microsoft Excel object model. Depending on what you
want inserted into the footer, the subroutine might also
34 CHAPTER 2

contain calls to the DM API, the DM Extensions API, other
third-party APIs, and VBA functions. Note that the footer
must be less than 254 characters in length; this is a
restriction imposed by Excel. Refer to Microsoft Excel
Customized Footer Sample Code for more information.

9. From the VBA editor menu, select File>Save.

10. Select File>Close; focus returns to Excel.

11. From the Excel menu, select File>Exit.

12. Copy the .xla file to one of the Excel Startup directories,
such as C:\Program Files\Microsoft
Office\OFFICE11\XLSTART. You must manage your Excel
security settings to allow this macro to run.

13. Select Start>Run, type REGEDIT, and then click OK; the
Registry Editor opens.

14. Create a name-value pair of type REG_SZ below the
following registry key:
HKEY_CURRENT_USER\Software\Microsoft\Office

\Excel\Addins\DM_COM_Addin.ExcelAddin.

15. Name the name-value pair EventBeforeFooter. This
name is case-specific. The value of the name-value pair is
the name of the module you created, followed by a period,
which is then followed by the name of the subroutine you
created. The module name and the subroutine name are
also case-specific.

16. Open Excel, create a document, and save it to DM.

17. From the Excel menu, select Insert>Footer; your custom
footer information will appear.

Microsoft Excel
Customized Footer

Sample Code

The following code demonstrates how you can customize the footer
with COM Automation. This code resides in a module named
moduleDMEventCode, which is located in an Excel template file
named footer.xla, located in the user’s Excel Startup directory.

' FILE NAME: footer.xla

' FILE LOCATION: an Excel Startup directory

' MODULE NAME: moduleDMEventCode

' Purpose:

' This module defines a custom subroutine that is called
by
USING COM AUTOMATION FOR MICROSOFT EXCEL 35

' DM when the user selects Insert>DM Footer from the Excel
menu.

' The subroutine inserts customized information into the
footer.

' To make the following code work, place the following 4
lines

' of text (minus the comment (') marks) into a .reg file
and

' run it.

'Windows Registry Editor Version 5.00

‘

'[HKEY_CURRENT_USER\Software\Microsoft\Office\Excel\Addin
s\DM_COM_Addin.ExcelAddin]

'"EventBeforeFooter"="moduleDMEventCode.subEventBeforeFoo
ter"

Public Sub subEventBeforeFooter(objWorkbook As Workbook)

Dim strFooterText As String

' You may insert any footer information.

strFooterText = get_footer_information()

Dim objWorksheet As Worksheet

Set objWorksheet = objWorkbook.ActiveSheet

' Excel limits the length of the footer.

strFooterText = Left(strFooterText, 250)

objWorksheet.PageSetup.LeftFooter = strFooterText

End Sub

Private Function get_footer_information() As String

Dim strFooterText As String

Dim objDOCSObjectsDM As Object

Dim strActiveDocumentFullName As String

Dim out_strValue As String

Dim strDocumentName As String

Dim strAuthorID As String

Dim strDocumentNumber As String

Dim strAbstract As String

Dim strForm As String

Dim strTypeID As String

Dim strCreationDate As String

Dim strLastEditDate As String

Dim strClientName As String

Dim strMatterName As String

Dim strClientID As String

Dim strMatterID As String

Dim strVersionNumber As String

strActiveDocumentFullName = ActiveWorkbook.FullName

Set objDOCSObjectsDM = CreateObject("DOCSObjects.DM")

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"DOCNAME", out_strValue
36 CHAPTER 2

strDocumentName = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"AUTHOR_ID", out_strValue

strAuthorID = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"DOCNUM", out_strValue

strDocumentNumber = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"ABSTRACT", out_strValue

strAbstract = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"TYPE_ID", out_strValue

strTypeID = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"CREATION_DATE", out_strValue

strCreationDate = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"LASTEDITDATE", out_strValue

strLastEditDate = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"CLIENT_NAME", out_strValue

strClientName = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"CLIENT_ID", out_strValue

strClientID = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
"FORM", _

out_strValue

strForm = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"MATTER_NAME", out_strValue

strMatterName = out_strValue

objDOCSObjectsDM.GetDocInfo strActiveDocumentFullName,
_

"MATTER_ID", out_strValue

strMatterID = out_strValue

strVersionNumber = _

get_version_number(strActiveDocumentFullName)

strFooterText = ""

' Comment out any of the following lines to remove

' information from the footer.

' You may also re-order the lines below.

' BEGIN LINES WHICH MAY BE COMMENTED OUT OR RE-ORDERED

strFooterText = strFooterText & "Document Name: " & _
USING COM AUTOMATION FOR MICROSOFT EXCEL 37

strDocumentName & "; "

strFooterText = strFooterText & "Document Number: " &
_

strDocumentNumber & "; "

strFooterText = strFooterText & "Version: " &
strVersionNumber _

& "; "

strFooterText = strFooterText & "Author: " &
strAuthorID _

& "; "

strFooterText = strFooterText & "Abstract: " &
strAbstract _

& "; "

strFooterText = strFooterText & "Form: " & strForm & ";
"

strFooterText = strFooterText & "TypeID: " & strTypeID
& "; "

strFooterText = strFooterText & "Creation Date: " & _

strCreationDate & "; "

strFooterText = strFooterText & "Last Edit Date: " & _

strLastEditDate & "; "

strFooterText = strFooterText & "Client Name: " & _

strClientName & "; "

strFooterText = strFooterText & "Client ID: " &
strClientID & "; "

strFooterText = strFooterText & "Matter Name: " & _

strMatterName & "; "

strFooterText = strFooterText & "Matter ID: " &
strMatterID

' END LINES WHICH MAY BE COMMENTED OUT OR RE-ORDERED

get_footer_information = strFooterText

End Function

Private Function get_version_number _

(strActiveDocumentFullName As String) As String

Dim strVersionNumber As String

Dim objRegExp As Object

Dim objMatches, objMatch As Object

Dim strMatchValue As String

strVersionNumber = ""

Set objRegExp = CreateObject("VBScript.RegExp")

objRegExp.Global = True

' The following regular expression looks

' for the following pattern:

' 1 non-alphanumeric character

' followed by

' 1 letter 'v', either upper or lower case

' followed by

' 1 or more decimal digits

' followed by

' 1 non-alphanumeric character

' Examples of matching patterns:
38 CHAPTER 2

' _v1_

' _V11_

' -V23-

' -v17-

' Thus, it catches the version number regardless of

' the delimiter used to delimit the various parts of

' a DM file name.

objRegExp.Pattern = "[^a-zA-Z0-9][vV][0-9]+[^a-zA-Z0-
9]"

Set objMatches =
objRegExp.Execute(strActiveDocumentFullName)

' The matches count will normally be one. For it to be

' different would generally require that the DM

' Administrator had made a change to how DM names
files.

If objMatches.Count = 0 Then

strVersionNumber = "<UNDEFINED>"

Else

' By default, and under normal circumstances, their
should

' be only one match object. The exceptions will be
in those

' situations where the author's id, the library
name, or the

' document name (or some other value added to the
document

' naming scheme by the DM Administrator) contains a
string

' that matches the regular expression above (e.g.
where the

' document name is "automobile_v8_engines"). If
this is an

' issue, perform further expression testing to
ensure that

' this function returns the version number.

Set objMatch = objMatches.Item(0)

strMatchValue = objMatch.Value

strVersionNumber = Left(strMatchValue, _

 Len(strMatchValue) - 1)

strVersionNumber = Right(strVersionNumber, _

 Len(strVersionNumber) - 2)

End If

get_version_number = strVersionNumber

End Function
USING COM AUTOMATION FOR MICROSOFT EXCEL 39

Using Excel’s Auto-Recovery Feature

For Auto-Recovery to work properly, you must disable DM Auto-
Recovery through the following registry key:

[HKEY_CURRENT_USER\Software\Hummingbird\PowerDOCS\Cor
e\
Plugins\Fusion\OM\Excludes]

Ensure that the following value is set:

"MS EXCEL"=dword:00000001

Excel 2000 does not support Auto-Recovery.
40 CHAPTER 2

Troubleshooting COM Automation for Excel

Should troubleshooting be necessary, a log file can be created in the DM
Extensions directory after you enable the log file in the following
registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Hummingbird\Hummingbird
DM Application Integration\Installation\Microsoft

Add a DWord value with the following values:

Name: Debug

Value: 2

Previous
Integration Files

Must Be Removed

Ensure that previous DM integration files are removed from Excel’s
Startup directory before using COM Automation; otherwise, both
integration files will be loaded and the integration will fail.
USING COM AUTOMATION FOR MICROSOFT EXCEL 41

C h a p t e r

3

Using Microsoft Office Menu

Shortcut Keys with COM
Automation

When you integrate Microsoft Word and/or Excel with DM using COM
Automation with Active integration, some menu shortcut keys are
intercepted and DM dialog boxes and controls are used instead of
native functionality. For example, if you create a new document and
select File>Save (CTRL+S), a Document Profile form appears for you to
complete instead of the native Save dialog box.

However, when you integrate Word and/or Excel using COM
Automation with Passive integration, the shortcut keys behave
differently. For example, when you save a new or previously
unmanaged document to DM, the File>Save (CTRL+S) shortcut key opens
the native Save dialog box instead of displaying a Profile form. To save
the document to DM, you must select DM>Save As or assign a different
shortcut key combination to the DM command.

The tables shown on following pages list the default key mappings that
Word and Excel applications use to call its functions. To see all native
key mappings, select Tools>Customize>Commands, and then click the
USING MICROSOFT OFFICE MENU SHORTCUT KEYS WITH COM AUTOMATION 43

Keyboard button. See the following image to see an example of the key
mappings for File>Save in Word.

Once DM reads these key mappings and maps them to DM functions,
you will not see these mappings in the Customize Keyboard dialog box
as shown above. To see the default list, you must view this dialog box in
a non-integrated version of Word.

Microsoft Office Intercepted Shortcut Keys

Word Intercepted
Shortcut Keys

Word Menu Action Intercepted Shortcut Keys

File>Save CTRL+S

SHIFT+F12

ALT+SHIFT+F2

File>SaveAs F12
44 CHAPTER 3

Excel Intercepted
Shortcut Keys

File>Open CTRL+O

CTRL+F12

ALT+CTRL+F2

File>Print CTRL+P

CTRL+SHIFT+F12

Word Menu Action Intercepted Shortcut Keys

Excel Menu Action Intercepted Shortcut Keys

File>Save CTRL+S

SHIFT+F12

File>SaveAs F12

File>Open CTRL+O

CTRL+F12

File>Close CTRL+W

CTRL+F4
USING MICROSOFT OFFICE MENU SHORTCUT KEYS WITH COM AUTOMATION 45

Removing DM Menu Items

In some instances, you might want to remove a DM menu item such as
File>Save With Options. Knowledge of Microsoft VBA is required to do
this. Please refer to the following code example.

Sub RemoveDMmenu(menuItem As String)

Dim cmdBar As CommandBar

Dim ctrl As CommandBarControl

Set cmdBar = Application.CommandBars("Menu Bar")

Set ctrl = cmdBar.FindControl(Tag:=menuItem,
recursive:=True)

If (Not (ctrl Is Nothing)) Then

ctrl.Delete

End If

End Sub

The sub would be called, passing in a tag string. The example below
removes the Save With Options function:

Call RemoveDMmenu("SWO")

DM Intercepted Menu Items

The DM-intercepted menu items are listed below with their assigned
tag name.

Active Integration

Active Integration Menu Item Tag Name

File>Save With Options SWO

Tools>Compare And Merge MERGE

File>Close Workspace SWSCLOSE

Insert>Footer FOOTER

Insert>File INSERTFILE

Help>About Hummingbird DM ABOUT
46 CHAPTER 3

Passive
Integration

Passive Integration Menu Item Tag Name

DM>Open DMOpen

DM>Save As DMSaveAs

DM>Save With Options DMSWO

DM>Close Workspace DMSWOCLOSE

DM>Insert File DMInsertFile

DM>Insert Picture DMInsertPic

DM>Insert Footer DMFooter

DM>Compare and Merge DMMerge

DM>About Hummingbird DM DMAbout

DM>Save Workspace DMSWORKSPACE
USING MICROSOFT OFFICE MENU SHORTCUT KEYS WITH COM AUTOMATION 47

C h a p t e r

4

DM Simplified API Technical

Information

DM Simplified API

The DM Simplified API hides the complex standard application
integration operations made via the DM Extensions API, and provides
an interface in which inhouse and third-party developers can rapidly
develop DM integration for third-party applications. DM Simplified
API contains the more commonly-used functionality of the DM
Extensions API.
DM SIMPLIFIED API TECHNICAL INFORMATION 49

Technical
Specifications

DM Simplified API refers to the DM object located in the DOCSFusion
Document Management Objects and Services type library, such as the
Fsplugin.dll file. The DM object exposes an automation interface with
seven methods and one property.

Methods

The methods are: OpenDoc, CloseDoc, SaveDoc, SaveDocAs, NewDoc, IsDMDoc,
and GetDocInfo.

Property

The property is Library.

Functions

DM.OpenDoc The OpenDoc function displays a Quick Retrieve window Based on the
user’s response, it will launch the associated application, and then open
the document in it via DDE.

Function OpenDoc(bstrFilePath As String, [bSingleSelect
As Boolean], [bstrAppID As String]) As IntegerParameters

bstrFilePath

[out] On success, this parameter will be assigned the path of the
document that is opened. On failure, this parameter will be an empty
string.

bSingleSelect

[optional] Used to specify whether or not multiple selections can be
made on the Quick Retrieve screen. The default value is FALSE (0).

bstrAppID

[in, optional] Used to specify a (compatible) Application ID for the
document to be opened into. The default value is NULL.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1) and
the document will be opened in the associated application. If the user
cancels the Quick Retrieve dialog box, the return value will be
VB_FALSE (0). Conversely, if the user cancels the Quick Retrieve
dialog box and the library setting Disable Native Open/Save is not selected,
the return value will be APP_SELECT (8). This should indicate to the
50 CHAPTER 4

calling application that a native Open File dialog box should be
displayed. If the user is presented with the DM logon dialog box during
this call and selects Cancel, the return code will be NOT_LOGGED_IN
(10).

Remarks

If bSingleSelect is TRUE (1), only one document in the Quick Retrieve
list can be selected, and the function will return the path to the
download document without opening the document into the
associated application. This parameter can be useful for creating mail
merges and attachments.

DM.CloseDoc The CloseDoc function is used to release DM’s reference to the opened
document object.

Function CloseDoc(bstrFilePath As String) As Integer

Parameters

bstrFilePath

[in] Path of the document to be released.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1), and
the document’s status will be changed to Available. If the function fails,
the return value will be VB_FALSE (0). If the user is presented with the
DM logon dialog box during this call and selects Cancel, the return code
will be NOT_LOGGED_IN (10).

Remarks

The CloseDoc function will not cause an application to close the actual
file.

DM.SaveDoc The SaveDoc function will upload the file specified in the bstrFilePath
variable to the document server.

Function SaveDoc(bstrFilePath As String) As Integer

Parameters

bstrFilePath

[in] Path of the document to be saved to DM.
DM SIMPLIFIED API TECHNICAL INFORMATION 51

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0). If the document
is not currently opened by DM (or is not a DM-managed document),
the return value will be UNMANAGED (9). A return value of UNMANAGED
should indicate to the calling application that DM.SaveDocAs should be
called in order to save the document to DM. If the user is presented
with the DM logon dialog box during this call and selects Cancel, the
return code will be NOT_LOGGED_IN (10).

DM.SaveDocAs The SaveDocAs function will save a new or existing document into DM.

Function SaveDocAs(bstrFilePath As String,
bstrNewFilePath As String, [bstrAppID As String], [in,
optional] bAutoRecovered As Boolean) As Integer

Parameters

bstrFilePath

[in] Path of the document to be saved to DM.

bstrNewFilePath

[in, out] Will contain the path of the new version or document if created
from an existing version. If the user selected Cancel or Replace Original, an
empty string will be returned.

bstrAppID

[in, optional] Can be used to prefill the Application field of the profile form.
The default value is NULL.

bAutoRecovered

[in, optional] Specifies whether or not the current document has been
auto-recovered by an application. Passing VB_TRUE (-1) will allow
DM to reassociate the Checked-Out status of the profile with current
SAPI operations. The default value is VB_FALSE (0).

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0). If the user
cancels the Profile form dialog box and the library setting Disable Native
Open/Save is not selected, the return value will be APP_SELECT (8).
This should indicate to the calling application that a native File Save
dialog box should be displayed. If the user is presented with the DM
52 CHAPTER 4

logon dialog box during this call and selects Cancel, the return code will
be NOT_LOGGED_IN (10).

DM.NewDoc The NewDoc function will create a new DM document based on an
existing DM template.

Function NewDoc(bstrFilePath As String) As Integer

Parameters

bstrFilePath

[in, out] Path of the document created by DM.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0). If the user is
presented with the DM logon dialog box during this call and selects
Cancel, the return code will be NOT_LOGGED_IN (10).

DM.IsDMDoc The IsDMDoc function will determine if a document is currently opened
in DM.

Function IsDMDoc(bstrFilePath As String) As Integer

Parameters

bstrFilePath

[in] Path of the document to be evaluated.

Return Values

If the document is a DM document, the return value will be VB_TRUE
(-1). If the document is not a DM document or the DM document’s
status is not Checked Out, the return value will be VB_FALSE (0). If the
user is presented with the DM logon dialog box during this call and
selects Cancel, the return code will be NOT_LOGGED_IN (10).

DM.GetDocInfo The GetDocInfo function will retrieve profile information relating to
the opened DM document.

Function GetDocInfo(bstrFilePath As String,
bstrColumnName As String, bstrColumnValue As String) As
Integer

Parameters

bstrFilePath
DM SIMPLIFIED API TECHNICAL INFORMATION 53

[in] Path of the document to be evaluated.

bstrColumnName

[in] The name of the target profile column.

bstrColumnValue

[out] The value of the profile column corresponding to bstrColumnName.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1) and
bstrColumnValue will contain a string. If the function fails, the return
value will be VB_FALSE (0) and bstrColumnValue will contain an empty
string. If the user is presented with the DM logon dialog box during this
call and selects Cancel, the return code will be NOT_LOGGED_IN (10).

DM.Library The read only Library property will contain the name of the library
which the user is logged on to.

Property Library As String

Remarks

If the user is currently logged on to DM, this property will contain the
name of the logged-on library. If the user is not logged on, this property
will contain an empty string. This property will not cause the DM
logon dialog box to be displayed if the user is not currently logged on.
This is an excellent way to determine whether or not a user is currently
logged on to DM.
54 CHAPTER 4

Sample Code

The sample code shown below was written in Microsoft Word VBA. To
use these sample routines, you must include DOCSFusion Document
Management Objects and Services type library as a reference in your
VB or VBA project.

DM.OpenDoc ‘Declarations

Dim appInt As DOCSObjects.DM

Const APP_SELECT = 8

Const UNMANAGED = 9

Const NOT_LOGGED_IN = 10

'Return Codes = True, False, APP_SELECT, NOT_LOGGED_IN

Sub SimpleApiOpen ()

 Dim filepath As String

 Dim ret As Integer

 Dim SingleSelect As Boolean

 SingleSelect = False

 If appInt Is Nothing Then

 Set appInt = CreateObject("DOCSObjects.DM")

 End If

 ret = appInt.OpenDoc(filepath, SingleSelect)

 Select Case ret

 Case True:

 If SingleSelect = True Then

 Documents.Open (filepath)

 End If

 Case False:

 'user cancelled

 Case APP_SELECT:

 'show native open dialog

 Application.Dialogs(wdDialogFileOpen).Show

 Case NOT_LOGGED_IN:

‘User did not log in to DM

 End Select

End Sub

DM.CloseDoc
'Return Codes = True, False, NOT_LOGGED_IN

Sub SimpleApiClose ()
DM SIMPLIFIED API TECHNICAL INFORMATION 55

 Dim filepath As String

 Dim ret As Integer

 If appInt Is Nothing Then

 Set appInt = CreateObject("DOCSObjects.DM")

 End If

 filepath = ActiveDocument.FullName

 ret = appInt.CloseDoc(filepath)

 Select Case ret

 Case True:

 ActiveDocument.Close False

 Case False:

 Case NOT_LOGGED_IN:

‘User did not log in to DM

 End Select

End Sub
56 CHAPTER 4

DM.SaveDoc 'Return Codes = True, False, UNMANAGED, NOT_LOGGED_IN

Sub SimpleApiSave ()

 Dim filepath As String

 Dim ret As Integer

 If appInt Is Nothing Then

 Set appInt = CreateObject("DOCSObjects.DM")

 End If

 If Word.ActiveDocument.Path = "" Then

 ret = appInt.SaveDoc(filepath)

 Else

 ActiveDocument.Save

 filepath = ActiveDocument.FullName

 ret = appInt.SaveDoc(filepath)

 End If

 Select Case ret

 Case True:

 ActiveDocument.SaveAs filepath

 Case False:

 MsgBox "User Canceled"

 Case UNMANAGED:

 MsgBox "Not a DM document"

 Case NOT_LOGGED_IN:

‘User did not log in to DM

 End Select

End Sub
DM SIMPLIFIED API TECHNICAL INFORMATION 57

DM.SaveAs 'Return Codes = True, False, APP_SELECT, NOT_LOGGED_IN

Sub SimpleApiSaveAs ()

 Dim filepath As String

 Dim NewFilePath As String

 Dim ret As Integer

 If appInt Is Nothing Then

 Set appInt = CreateObject("DOCSObjects.DM")

 End If

 filepath = ActiveDocument.FullName

 ret = appInt.SaveDocAs(filepath, NewFilePath, "MS
WORD")

 Select Case ret

 Case True:

 Application.ActiveDocument.SaveAs NewFilePath

 Case False:

 Case APP_SELECT:

 MsgBox "AppSelect"

 Case NOT_LOGGED_IN:

‘User did not log in to DM

 End Select

End Sub
58 CHAPTER 4

DM.IsDMDoc 'Return Codes = True, False, NOT_LOGGED_IN

Sub SimpleAPIIsDMDoc ()

 Dim ret As Integer

 If appInt Is Nothing Then

 Set appInt = CreateObject("DOCSObjects.DM")

 End If

 ret = appInt.IsDMDoc(ActiveDocument.Path)

 Select Case ret

 Case True:

 MsgBox "ActiveDocument is a DM document"

 Case False:

 MsgBox "ActiveDocument is not a DM document"

 Case NOT_LOGGED_IN:

‘User did not log in to DM

 End Select

End Sub
DM SIMPLIFIED API TECHNICAL INFORMATION 59

DM.GetDocInfo 'Return Codes = True, False, NOT_LOGGED_IN

Sub SimpleAPIGetProfileInfo ()

 Dim filepath As String

 Dim ColValue As String

 Dim colat As String

 Dim ret As Integer

 If appInt Is Nothing Then

 Set appInt = CreateObject("DOCSObjects.DM")

 End If

 filepath = ActiveDocument.FullName

 ret = appInt.GetDocInfo(filepath, "DOCNAME", ColValue)

 colat = "Docname = " & ColValue & Chr(13)

 ret = appInt.GetDocInfo(filepath, "AUTHOR_ID",
ColValue)

 colat = colat & "Author = " & ColValue & Chr(13)

 ret = appInt.GetDocInfo(filepath, "ABSTRACT",
ColValue)

 colat = colat & "Typist = " & ColValue & Chr(13)

 Select Case ret

 Case True:

 MsgBox colat, vbOKOnly, "Hummingbird"

 Case False:

 Case APP_SELECT:

 Case NOT_LOGGED_IN:

‘User did not log in to DM

 End Select

End Sub
60 CHAPTER 4

C h a p t e r

5

DM COM Add-in Programmer's

Guide for Microsoft Word

The DM COM Add-in exposes an automation interface with the
following methods:

• DMClose

• DMCompare

• DMCompareAndMerge

• DMExit

• DMFooter

• DMInsertFile

• DMInsertPicture

• DMNativeSave

• DMNativeSaveAs

• DMOpen

• DMPasswordProtectDocument

• DMSave

• DMPrint—DMPrint is obsolete and is not used by the DM
COM Add-in.
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 61

DM_COM_Addin.clsWord.DMClose

The DMClose function is used to release the DM reference to the opened
document

object.

Function DMClose(oDoc As Document) As Boolean

Parameters

oDoc

[in] Word Document object.

Return Values

If the function succeeds, the return value will be VB_FALSE (0), and
the document’s status will be changed to Available. If the function fails,
the return value will be VB_TRUE (-1).

Remarks

The CloseDoc function will not cause an application to close the actual
file. DMClose is called by a Word event: DocumentBeforeClose.

DM_COM_Addin.clsWord.DMCompare

The DMCompare function is used to compare the active document to a
DM document. Note that this function is used only in Word 2000.

Function dmCompare() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).

DM_COM_Addin.clsWord.DMCompareAndMerge

The DMCompareAndMerge function is used to release the DM reference to
the opened document object.

Function DMCompareAndMerge() As Boolean
62 CHAPTER 5

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).

Remarks

This function is used in Microsoft Word XP and later versions.

DM_COM_Addin.clsWord.DMExit

The DMExit function is used to release the DM reference to all open
documents, to close the actual files, and to exit Word.

Function DMExit() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).

DM_COM_Addin.clsWord.DMFooter

The DMFooter function is used to add a footer to the document that
contains DM profile data.

Sub DMFooter(oDoc As Document)

Parameters

oDoc

[in] Word Document object.

Remarks

This function inserts the Document Number, Document Name,
Document Author, Document Type, Document Abstract, and
Application ID.

DM_COM_Addin.clsWord.DMInsertFile

The DMInsertFile function is used to insert a DM document into the
active document.
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 63

Function DMInsertFile() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).

Remarks

The Microsoft Word document format converters must be installed
before using this function.

DM_COM_Addin.clsWord.DMInsertPicture

The DMInsertPicture function is used to insert a DM picture into the
active document.

Function DMInsertPicture() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).

Remarks

You must select a valid picture file, such as .JPG.

DM_COM_Addin.clsWord.DMNativeSave

The DMNativeSave function is used to save an existing DM or native
document when using Passive Integration.

Function DMNativeSave(oDoc As Document) As Boolean

Parameters

oDoc

[in] Word Document object.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).
64 CHAPTER 5

DM_COM_Addin.clsWord.DMNativeSaveAs

The DMNativeSaveAs function is used to save a document as a new
document to the local file system.

Function DMNativeSave(oDoc As Document) As Boolean

Parameters

oDoc

[in] Word Document object.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If
the function fails, the return value will be VB_FALSE (0).

Remarks

If the document is a DM document, the document’s status will be
changed to Available.

DM_COM_Addin.clsWord.DMOpen

The DMOpen function is used to open documents from DM.

Function DMOpen() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

DM_COM_Addin.clsWord.DMPasswordProtect
Document

The DMPasswordProtectDocument function is used to show the Save With
Options dialog box.

Sub DMPasswordProtectDocument()
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 65

DM_COM_Addin.clsWord.DMPrint

The DM COM Add-in does not use this function.

DM_COM_Addin.clsWord.DMSave

The DMSave function is used to save and upload the document to DM.

Function DMSave(oDoc As Document) As Boolean

Parameters

oDoc

[in] Word Document object.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

Remarks

If the document is not managed, the application will perform a native
save.

DM_COM_Addin.clsWord. DMSaveAS

The DMSaveAS function is used to create the Document Profile and get a
return path to save the actual file.

Function DMSaveAS(oDoc As Document, [sProtectPass As
String], [sWritePass As String], [ReadOnlyRec As Boolean],
[CalledFromSave As Integer], [CalledFromNew As Integer],
[fileType], [bIsRecovered As Boolean = False]) As Boolean

Parameters

oDoc

[in] Word Document object.

sProtectPass

[in,optional] Protection password to apply to document.

sWritePass

[in,optional] Write-Reserve password to apply to document.

ReadOnlyRec
66 CHAPTER 5

[in,optional] Open document as read-only recommended.

CalledFromSave

[in,optional] Not used.

CalledFromNew

[in,optional] Not used.

fileType

[in,optional] File format of the document.

blsRecovered

[in,optional] Document is Auto-Recovered.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

Remarks

The DMSaveAS function does not upload the file.
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 67

Sample Code

The sample code below was written in Microsoft Word VBA. To use
these sample routines, you must include the Office DM Integration
Addin type library as a reference in your VB or VBA project.

DM_COM_Addin.cls
Word.DMClose

Private Sub DMWordAddinClose()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMClose(ActiveDocument)

 If (rc = False) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMCompare

Private Sub DMWordAddinCompare()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.dmCompare

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
68 CHAPTER 5

DM_COM_Addin.cls
Word.DMCompareA

ndMerge

Private Sub DMWordAddinCompareAndMerge()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.dmCompareAndMerge

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMExit

Private Sub DMWordAddinExit()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMExit

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 69

DM_COM_Addin.cls
Word.DMFooter

Private Sub DMWordAddinFooter()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 oDMWordAddin.DMFooter ActiveDocument

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMInsertFile

Private Sub DMWordAddinInsertFile()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.dmInsertFile

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
70 CHAPTER 5

DM_COM_Addin.cls
Word.DMInsert

Picture

Private Sub DMWordAddinInsertPicture()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.dmInsertPicture

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMNative

Save

Private Sub DMWordAddinNativeSave()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMNativeSave(ActiveDocument)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 71

DM_COM_Addin.cls
Word.DMNative

SaveAs

Private Sub DMWordAddinNativeSaveAS()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMNativeSaveAs(ActiveDocument)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMOpen

Private Sub DMWordAddinOpen()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMOpen

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
72 CHAPTER 5

DM_COM_Addin.cls
Word.DMPassword
ProtectDocument

Private Sub DMWordAddinPasswordProtectDocument()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 oDMWordAddin.dmPasswordProtectDocument

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMPrint

Private Sub DMWordAddinPrint()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.dmPrint(ActiveDocument)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT WORD 73

DM_COM_Addin.cls
Word.DMSave

Private Sub DMWordAddinSave()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMSave(ActiveDocument)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub

DM_COM_Addin.cls
Word.DMSaveAS

Private Sub DMWordAddinSaveAS()

 Dim rc As Boolean

 Dim oDMWordAddin As DM_COM_Addin.clsWord

 Set oDMWordAddin = New DM_COM_Addin.clsWord

 rc = oDMWordAddin.DMSaveAS(ActiveDocument, "TEST",
"TEST", 1)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMWordAddin = Nothing

End Sub
74 CHAPTER 5

C h a p t e r

6

DM COM Add-in Programmer's

Guide for Microsoft Excel

The DM COM Add-in exposes an automation interface with the
following methods:

• DMClose

• DMCloseWorkspace

• DMExit

• DMFooter

• DMInsertPicture

• DMNativeSave

• DMNativeSaveAs

• DMOpen

• DMOpenVersion

• DMPwdProtDoc

• DMRestoreWorkspace

• DMSave

• DMSaveAS

• DMSaveWorkspace
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 75

DM_COM_ADDIN.clsExcel.DMClose

The DMClose function is used to release the DM reference to the opened
document object.

Function DMClose(oDoc As Workbook) As Boolean

Parameters

oDoc

[in] Excel Workbook object.

Return Values

If the function succeeds, the return value will be VB_FALSE (0), and
the document's status will be changed to Available. If the function fails,
the return value will be VB_TRUE (-1).

Remarks

The DMClose function will not cause an application to close the actual
file. DMClose is called by the Excel WorkbookBeforeClose event.

DM_COM_ADDIN.clsExcel.DMCloseWorkspace

The DMCloseWorkspace function is used to close all open workbooks that
are part of the current workspace.

Function DMCloseWorkspace()

DM_COM_ADDIN.clsExcel.DMExit

The DMExit function is used to close all open workbooks and exit Excel.

Function DMExit() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1), and
the document's status will be changed to Available. If the function fails,
the return value will be VB_FALSE (0).
76 CHAPTER 6

DM_COM_ADDIN.clsExcel.DMFooter

The DMFooter function is used to add a footer to the document that
contains DM profile data.

Sub DMFooter(oDoc As Workbook)

Parameters

oDoc

[in] Excel Workbook object.

Remarks

This function inserts the Document Number, Document Name,
Document Author, Document Type, Document Abstract, and
Application ID.

DM_COM_ADDIN.clsExcel.DMInsertPicture

The DMInsertPicture function is used to insert a DM picture into the
active workbook.

Function DMInsertPicture() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

Remarks

You must select a valid picture type, such as .JPG.

DM_COM_ADDIN.clsExcel.DMNativeSave

The DMNativeSave function is used to save an existing DM or native
document when using Passive Integration.

Function DMNativeSave(oDoc As Workbook) As Boolean

Parameters

ODoc

[in] Excel Workbook object.
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 77

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

DM_COM_ADDIN.clsExcel.DMNativeSaveAs

The DMNativeSaveAs function is used to save as an existing DM or native
document when using Passive Integration.

Function DMNativeSaveAs(oDoc As Workbook, [iDoClose As
Integer]) As Boolean

Parameters

ODoc

[in] Excel Workbook object.

iDoClose

[in, optional] An integer, which specifies whether the document should
be released from DM.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

Remarks

If the document is a DM document, the document's status will be
changed to Available.

DM_COM_ADDIN.clsExcel.DMOpen

The DMOpen function is used to open documents from DM.

Function DMOpen() As Boolean

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).
78 CHAPTER 6

DM_COM_ADDIN.clsExcel.DMOpenVersion

The DMOpenVersion function is used to open a specific version of a
document.

Sub DMOpenVersion(iDocNumber As Long, sVersionID As
String)

Parameters

iDocNumber

[in] The DM document number.

sVersionID

[in, optional] The DM Version ID.

DM_COM_ADDIN.clsExcel.DMPwdProtDoc

The DMPwdProtDoc function is used to display the Save With Options dialog
box.

Sub DMPwdProtDoc()

DM_COM_ADDIN.clsExcel.DMRestoreWorkspace

The DMRestoreWorkspace function is used to open an Excel workspace.

Sub DMRestoreWorkspace()

Remarks

This function opens Excel workspaces that are saved to DM. (This
should not be confused with DM Workspaces.)

DM_COM_ADDIN.clsExcel.DMSave

The DMSave function is used to save and upload the document to DM.

Function DMSave(oDoc As Workbook) As Boolean

Parameters

oDoc

[in] Excel Workbook object.
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 79

Return Values

If the function succeeds, the return value will be VB_TRUE (-1). If the
function fails, the return value will be VB_FALSE (0).

Remarks

If the document is not managed, Excel performs a native save
operation.

DM_COM_ADDIN.clsExcel.DMSaveAS

The DMSaveAS function is used to create the Document Profile and
obtain a return path to save the actual file.

Function DMSaveAS(oDoc As Workbook, [sProtectPass As
String], [sWritePass As String], [ReadOnlyRec As Boolean],
[CalledFromSave As Integer], [CalledFromNew As Integer])
As Boolean

Parameters

oDoc

[in] Excel Workbook object.

sProtectPass

[in,optional] Protection password to apply to workbook.

sWritePass

[in,optional] Write-Reserve password to apply to workbook.

ReadOnlyRec

[in,optional] Open workbook as read-only recommended.

CalledFromSave

[in,optional] Not used.

CalledFromNew

[in,optional] Not used.

Return Values

If the function succeeds, the return value will be VB_TRUE (-1).If the
function fails, the return value will be VB_FALSE (0).
80 CHAPTER 6

Remarks

The DMSaveAS function does not upload the file.

DM_COM_ADDIN.clsExcel.DMSaveWorkspace

The DMSaveWorkspace function is used to save an Excel DM workspace.

Sub DMSaveWorkSpace()

Remarks

This function saves Excel workspaces to DM. (This should not be
confused with DM Workspaces.)
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 81

Sample Code

The sample code shown below was written in Microsoft Word VBA. To
use these sample routines, you must include Office DM Integration
Addin type library as a reference in your VB or VBA project.

DM_COM_ADDIN.
clsExcel.DMClose

Private Sub DMExcelAddinClose()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMClose(ActiveWorkbook)

 If (rc = False) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMexcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMClose

Workspace

Private Sub DMExcelAddinCloseWorkspace()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMCloseWorkSpace

 Set oDMExcelAddin = Nothing

End Sub
82 CHAPTER 6

DM_COM_ADDIN.cl
sExcel.DMExit

Private Sub DMExcelAddinExit()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMExit

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMFooter

Private Sub DMExcelAddinFooter()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMFooter (ActiveWorkbook)

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMInsert

Picture

Private Sub DMExcelAddinInsertPicture()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMInsertPicture

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMNativeS

ave

Private Sub DMExcelAddinNativeSave()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMNativeSave(ActiveWorkbook)

DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 83

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMNativeS

aveAs

Private Sub DMExcelAddinNativeSaveAs()

 Dim rc As Boolean

 Dim CloseDocinDM As Integer

 CloseDocinDM = 0

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMNativeSaveAs(ActiveWorkbook,
CloseDocinDM)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMExcelAddin = Nothing

End Sub
84 CHAPTER 6

DM_COM_ADDIN.
clsExcel.DMOpen

Private Sub DMExcelAddinOpen()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMOpen

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMOpen

Version

Private Sub DMExcelAddinOpenVersion()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMOpenVersion 222, 3

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMPwd

ProtDoc

Private Sub DMExcelAddinPwdProtDoc()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMPwdProtDoc

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DM

RestoreWorkspace

Private Sub DMExcelAddinRestoreWorkspace()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 85

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMRestoreWorkspace

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMSave

Private Sub DMExcelAddinSave()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMSave(ActiveWorkbook)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMExcelAddin = Nothing

End Sub

DM_COM_ADDIN.
clsExcel.DMSaveAS

Private Sub DMExcelAddinSaveAS()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 rc = oDMExcelAddin.DMSaveAS(ActiveWorkbook, "test",
"test", True)

 If (rc = True) Then

 Debug.Print "Success"

 Else

 Debug.Print "Fail"

 End If

 Set oDMExcelAddin = Nothing

End Sub
86 CHAPTER 6

DM_COM_ADDIN.
clsExcel.DMSave

Workspace

Private Sub DMExcelAddinSaveWorkspace()

 Dim rc As Boolean

 Dim oDMExcelAddin As DM_COM_Addin.clsExcel

 Set oDMExcelAddin = New DM_COM_Addin.clsExcel

 oDMExcelAddin.DMSaveWorkSpace

 Set oDMExcelAddin = Nothing

End Sub
DM COM ADD-IN PROGRAMMER'S GUIDE FOR MICROSOFT EXCEL 87

I n d e x
C
COM Automation for Microsoft Excel 27
COM Automation for Microsoft Word 5

D
DM Mail Merge 12
DM Simplified API Technical
Specifications 49

F
Footers

Microsoft Excel 34

Microsoft Word 16

I
Installing

Excel COM Add-in 29

Word COM Add-in 7

M
Mail merge

creating a data source in Word 15

Open a Native Data Source 15
Selecting a Saved Data Source 14

Word 12
Member Functions

Excel

DMClose 76

DMCloseWorkspace 76

DMExit 76

DMFooter 77

DMInsertPicture 77

DMNativeSave 77

DMNativeSaveAs 78

DMOpen 78

DMOpenVersion 79

DMPwdProtDoc 79

DMRestoreWorkspace 79

DMSave 79

DMSaveAS 80

DMSaveWorkspace 81
89

Index
SAPI

DM.CloseDoc 51

DM.GetDocInfo 53

DM.IsDMDoc 53

DM.Library 54

DM.NewDoc 53

DM.SaveDoc 51

DM.SaveDocAs 52

Word

DMClose 62

DMCompare 62

DMCompareAndMerge 62

DMExit 63

DMFooter 63

DMInsertFile 63

DMInsertPicture 64

DMNativeSave 64

DMNativeSaveAs 65

DMOpen 65

DMPasswordProtectDocument 65

DMPrint 66

DMSave 66

DMSaveAS 66
Microsoft applications

Word

mail merge 15

selecting a data source 14

N
New Functionality

Microsoft Excel 28

Microsoft Word 6
90
O
open a native data source 15

S
Sample Code

Excel 82

DMClose 82

DMCloseWorkspace 82

DMExit 83

DMFooter 83

DMInsertPicture 83

DMNativeSave 83

DMNativeSaveAs 84

DMOpen 85

DMOpenVersion 85

DMPwdProtDoc 85

DMRestoreWorkspace 85

DMSave 86

DMSaveAS 86

DMSaveWorkspace 87

SAPI

DM.CloseDoc 55

DM.GetDocInfo 60

DM.IsDMDoc 59

DM.OpenDoc 50, 55

DM.SaveAs 58

DM.SaveDoc 57

Index
Word

DMClose 68

DMCompare 68

DMCompareAndMerge 69

DMExit 69

DMFooter 70

DMInsertFile 70

DMInsertPicture 71

DMNativeSave 71

DMNativeSaveAs 72

DMOpen 72

DMPasswordProtectDocument 73

DMPrint 73

DMSave 74

DMSaveAS 74
Supporting Software

Microsoft Excel 28

Microsoft Word 6

W
Word

mail merge 12
91

	Contents
	Using COM Automation for Microsoft Word
	About COM Automation for Microsoft Word
	Supporting Software
	New Functionality

	Installing COM Automation for Microsoft Word
	Create a Launch Method
	Refresh DM Server Caches
	Implement COM Automation for Word on User Workstations

	Performing a Mail Merge in Word
	Before You Begin
	Selecting the Main Document
	Creating a New Data Source in Word
	Selecting a Saved Data Source
	Opening a Native Data Source

	Customizing the DM Footer with COM Automation
	Microsoft Word Customized Footer Sample Code

	Using Word’s AutoRecover Feature
	Troubleshooting COM Automation for Word
	Word Stops Responding
	Auto-Recovery
	Previous Integration Files Must Be Removed
	COM Automation for Word Registry Setting
	E-mail Integration

	Using COM Automation for Microsoft Excel
	About COM Automation for Microsoft Excel
	Supporting Software
	New Functionality

	Installing COM Automation for Microsoft Excel
	Create a Launch Method
	Refresh DM Server Caches
	Implement COM Automation for Excel on User Workstations

	Customizing the DM Footer with COM Automation
	Microsoft Excel Customized Footer Sample Code

	Using Excel’s Auto-Recovery Feature
	Troubleshooting COM Automation for Excel
	Previous Integration Files Must Be Removed

	Using Microsoft Office Menu Shortcut Keys with COM Automation
	Microsoft Office Intercepted Shortcut Keys
	Word Intercepted Shortcut Keys
	Excel Intercepted Shortcut Keys

	Removing DM Menu Items
	DM Intercepted Menu Items
	Active Integration
	Passive Integration

	DM Simplified API Technical Information
	DM Simplified API
	Technical Specifications

	Functions
	DM.OpenDoc
	DM.CloseDoc
	DM.SaveDoc
	DM.SaveDocAs
	DM.NewDoc
	DM.IsDMDoc
	DM.GetDocInfo
	DM.Library

	Sample Code
	DM.OpenDoc
	DM.CloseDoc
	DM.SaveDoc
	DM.SaveAs
	DM.IsDMDoc
	DM.GetDocInfo

	DM COM Add-in Programmer's Guide for Microsoft Word
	DM_COM_Addin.clsWord.DMClose
	DM_COM_Addin.clsWord.DMCompare
	DM_COM_Addin.clsWord.DMCompareAndMerge
	DM_COM_Addin.clsWord.DMExit
	DM_COM_Addin.clsWord.DMFooter
	DM_COM_Addin.clsWord.DMInsertFile
	DM_COM_Addin.clsWord.DMInsertPicture
	DM_COM_Addin.clsWord.DMNativeSave
	DM_COM_Addin.clsWord.DMNativeSaveAs
	DM_COM_Addin.clsWord.DMOpen
	DM_COM_Addin.clsWord.DMPasswordProtect Document
	DM_COM_Addin.clsWord.DMPrint
	DM_COM_Addin.clsWord.DMSave
	DM_COM_Addin.clsWord. DMSaveAS
	Sample Code
	DM_COM_Addin.cls Word.DMClose
	DM_COM_Addin.cls Word.DMCompare
	DM_COM_Addin.cls Word.DMCompareA ndMerge
	DM_COM_Addin.cls Word.DMExit
	DM_COM_Addin.cls Word.DMFooter
	DM_COM_Addin.cls Word.DMInsertFile
	DM_COM_Addin.cls Word.DMInsert Picture
	DM_COM_Addin.cls Word.DMNative Save
	DM_COM_Addin.cls Word.DMNative SaveAs
	DM_COM_Addin.cls Word.DMOpen
	DM_COM_Addin.cls Word.DMPassword ProtectDocument
	DM_COM_Addin.cls Word.DMPrint
	DM_COM_Addin.cls Word.DMSave
	DM_COM_Addin.cls Word.DMSaveAS

	DM COM Add-in Programmer's Guide for Microsoft Excel
	DM_COM_ADDIN.clsExcel.DMClose
	DM_COM_ADDIN.clsExcel.DMCloseWorkspace
	DM_COM_ADDIN.clsExcel.DMExit
	DM_COM_ADDIN.clsExcel.DMFooter
	DM_COM_ADDIN.clsExcel.DMInsertPicture
	DM_COM_ADDIN.clsExcel.DMNativeSave
	DM_COM_ADDIN.clsExcel.DMNativeSaveAs
	DM_COM_ADDIN.clsExcel.DMOpen
	DM_COM_ADDIN.clsExcel.DMOpenVersion
	DM_COM_ADDIN.clsExcel.DMPwdProtDoc
	DM_COM_ADDIN.clsExcel.DMRestoreWorkspace
	DM_COM_ADDIN.clsExcel.DMSave
	DM_COM_ADDIN.clsExcel.DMSaveAS
	DM_COM_ADDIN.clsExcel.DMSaveWorkspace
	Sample Code
	DM_COM_ADDIN. clsExcel.DMClose
	DM_COM_ADDIN. clsExcel.DMClose Workspace
	DM_COM_ADDIN.cl sExcel.DMExit
	DM_COM_ADDIN. clsExcel.DMFooter
	DM_COM_ADDIN. clsExcel.DMInsert Picture
	DM_COM_ADDIN. clsExcel.DMNativeS ave
	DM_COM_ADDIN. clsExcel.DMNativeS aveAs
	DM_COM_ADDIN. clsExcel.DMOpen
	DM_COM_ADDIN. clsExcel.DMOpen Version
	DM_COM_ADDIN. clsExcel.DMPwd ProtDoc
	DM_COM_ADDIN. clsExcel.DM RestoreWorkspace
	DM_COM_ADDIN. clsExcel.DMSave
	DM_COM_ADDIN. clsExcel.DMSaveAS
	DM_COM_ADDIN. clsExcel.DMSave Workspace

	Index

