

 OpenText™ IMaaS Tools for VS Code

 User Guide

This guide describes how to use the OpenText™ IMaaS Tools VS Code extension pack for

developing and deploying applications that consume the OpenText™ IMaaS APIs.

This documentation has been created for software version OpenText™ IMaaS Tools for VS
Code 22.3.5.

It is also valid for subsequent software releases unless OpenText has made newer documentation
available with the product, on an OpenText website, or by any other means.

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Tel: +1-519-888-7111

Toll Free Canada/USA: 1-800-499-6544 | International: +800-4996-5440

Fax: +1-519-888-0677

Support: https://support.opentext.com

For more information, visit https://www.opentext.com

Copyright © 2022 Open Text. All Rights Reserved.

Trademarks owned by Open Text.

One or more patents may cover this product. For more information, please visit
https://www.opentext.com/patents

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this
publication. However, Open Text Corporation and its affiliates accept no responsibility and offer no
warranty whether expressed or implied, for the accuracy of this publication.

Last updated: 09/09/2022

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 2

Contents
1 Introduction .. 3

2 Overview ... 4
2.1 OpenText IMaaS Tools view .. 4
2.2 Explorer view ... 5
2.3 Command Palette .. 6

3 Setting up organization profiles ... 7
3.1 Adding organization profiles .. 7
3.2 Adding tenants to a profile ... 9

4 Setting up a project .. 11

5 Creating models ... 13
5.1 Creating a namespace .. 15
5.2 Creating a trait definition .. 16
5.3 Creating a type definition ... 18
5.4 Creating a workflow definition.. 21
5.5 Creating a group .. 22

6 Deploying a project .. 23

7 Using the otcloud Command Line Interface.. 25

8 Contact information ... 26

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 3

1 Introduction

This user guide provides instructions for pro-code developers on how to use the OpenText™ IMaaS

Tools for VS Code 22.3.5 to build applications that consume the IMaaS (Information Management as

a Service) APIs from the OpenText™ API Cloud.

It covers the topics of connecting to a developer organization in the OpenText API Cloud, creating an

IMaaS application project with its different models (IMaaS application configuration artifacts), and

deploying this application to the different IMaaS APIs through the integrated ALM (Application

Lifecycle Management) deployment functionality.

We recommend that you always use the link to this user guide from the OpenText™ IMaaS Tools

Help and Feedback section in VS Code (see Fig. 1.1), so that you are certain to have the up-to-date

user guide which corresponds with the IMaaS Tools for VS Code version you have installed in your

Visual Studio Code IDE.

Fig. 1.1:

In addition to this user guide, the Help and Feedback section also contains the IMaaS developer

tutorial (see Fig. 1.2), which guides you through a detailed journey on how to build an application with

the OpenText™ IMaaS Tools for VS Code. It is highly recommended you follow this tutorial as a way

of getting started, as not does it provide you with a thorough understanding of the use of the IMaaS

functionality in VS Code, but it also explains where to find key developer documentation, and how to

consume the IMaaS APIs of the OpenText™ API Cloud.

Fig. 1.2:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 4

2 Overview

Installing the OpenText™ IMaaS Tools VS Code extension pack adds the IMaaS developer

functionality to the Visual Studio Code IDE, referred to as VS Code from here.

The IMaaS developer functionality is available in VS Code from three different locations:

• The OpenText IMaaS Tools view in the VS Code Activity Bar

• The Explorer view in the VS Code Activity Bar

• The VS Code Command Palette

In this chapter we go over these three locations and describe the IMaaS developer capabilities they

provide.

2.1 OpenText IMaaS Tools view

In VS Code, you can switch between different views through the Activity Bar (see Fig. 2.1).

Fig. 2.1:

When the OpenText™ IMaaS Tools VS Code extension pack is installed, you can access the

OpenText IMaaS Tools view from the Activity Bar (see Fig 2.2).

Fig. 2.2:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 5

The OpenText IMaaS Tools view is divided into three sections:

• Profiles:

This is where the developer can configure authentication profiles to allow connecting and

deploying to multiple developer organizations in the OpenText™ API Cloud.

• Models:

This is where the developer can configure the OpenText project and, once configured, explore the

different models that exist in the project.

• Help and Feedback:

This is where the developer can directly access the OpenText™ IMaaS Tools VS Code extension

pack’s user guide, the IMaaS developer tutorial (explains how to get started with developing

IMaaS applications), and where they can report an issue or suggest a new feature.

2.2 Explorer view

In the standard VS Code Explorer view, installing the OpenText™ IMaaS Tools VS Code extension

pack adds two menu entries to the contextual menu of the VS Code workspace root folder (see Fig.

2.3).

Fig. 2.3:

• Clicking the OpenText: Project Properties menu entry opens the IMaaS project properties

screen, allowing you to edit the project and application properties.

• Clicking the OpenText: Deploy to Default Tenant menu entry deploys your IMaaS application

project to the configured default tenant in the default authentication profile, see Setting up

organization profiles, for details.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 6

2.3 Command Palette

The VS Code Command Palette (available by pressing Ctrl+Shift+P or F1, depending on your

system) allows you to access all the functionality of VS Code. So, the functionality that has been

added to VS Code by the OpenText™ IMaaS Tools VS Code extension pack is also directly available

from the Command Palette (see Fig. 2.4), i.e.: as the different commands.

Since the Command Palette allows filtering commands, typing “opentext” in the filter box ensures you

see all available OpenText™ IMaaS Tools related commands.

Fig. 2.4:

The commands from the Command Palette that allow creating new models are described further in

the Creating models chapter of this user guide.

You now have an understanding of the different locations in VS Code where you can access the

features of the OpenText™ IMaaS Tools extension pack. The following chapters in this user guide

describe how to use those features.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 7

3 Setting up organization profiles

This chapter describes how to set up VS Code OpenText Cloud API organization profiles. More

specifically, it details how to create a profile to your OpenText Cloud Platform organization(s) and

tenants, so that it is possible to use these profiles to authenticate and deploy your application project

to the API Cloud.

3.1 Adding organization profiles

When working with the OpenText Cloud APIs you can work with multiple organizations. You may, for

example, have an organization in different regions. Adding an organization profile allows you to

connect to these different organizations.

Adding a profile is done by using New Organization Profile from the contextual menu of the Profiles

section (see Fig. 3.1.1).

Fig. 3.1.1:

Using this option opens the authentication profile configuration screen (see Fig. 3.1.2). By default,

only the Region is prefilled.

Fig. 3 1.2:

The different authentication profile properties on the OpenText Authentication Profile configuration

screen are:

• Profile Name: the name of the authentication profile

• Organization Name: the name of the developer organization

• Organization ID: the (unique) ID of the developer organization

• Public Client ID: the public client ID of the developer organization

• Region: the region in which the organization is located. Possible options are na-1-dev, na-1,

eu-1. This field is defaulted to na-1-dev. The region can be found by looking at the url that is

used to open the Developer Console (see Fig. 3.1.3).

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 8

Fig. 3.1.3:

Organization name, Organization ID and Public Client ID are provided when creating an organization

in developer.opentext.com, and they can also be retrieved through the organization Console in your

developer.opentext.com subscription.

To save the profile configuration, select Save from the File menu, or press Ctrl+S on your keyboard.

To test the configured organization profile, click Connect from the OpenText Authentication Profile

form (see Fig. 3.1.4).

Fig. 3.1.4:

To change an existing organization profile, use the Edit Profile context menu option of the specific

profile (see Fig. 3.1.5).

To delete an organization profile, use the Delete profile context menu option of the specific profile.

Note that in case you have multiple organization profiles that it is not possible to delete a profile that is

marked as default. A default profile can only be deleted when it is the only existing profile (see Fig.

3.1.5).

Fig. 3.1.5:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 9

The first organization profile that is added is set as the default profile. In case multiple organization

profiles are available then one of these can be set as the default profile for deployment. Use the Set

Profile as Default context menu option of the specific profile (see Fig. 3.1.6).

Fig. 3.1.6:

3.2 Adding tenants to a profile

An organization can have multiple tenants. When no specific tenants are added to the organization

authentication profile then, when deploying your project, the application is deployed to all tenants in

that organization. It is possible to add specific tenants and mark one of these tenants as the default

tenant to deploy to. This way it is possible to deploy to a specific tenant only.

To add a specific tenant to an organization profile, use the Add Tenant context menu option of the

specific profile (see Fig. 3.2.1). In the top middle of the VS Code UI input fields are shown, use these

to enter the Tenant Name and Tenant ID (see Fig. 3.2.2 and see Fig. 3.2.3).

Fig. 3.2.1:

Fig. 3.2.2:

Fig. 3.2.3:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 10

To change an existing tenant, use the Edit Tenant context menu option of the specific tenant (see Fig.

3.2.4).

To delete a tenant, use the Delete Tenant context menu option of the specific tenant (see Fig. 3.2.4).

Fig. 3.2.4:

The first tenant that is added to an organization profile is set as the default tenant. In case multiple

tenants are available then one of these can be set as the default tenant for deployment. Use the Set

Tenant as Default context menu option of the specific tenant (see Fig. 3.2.5).

Fig. 3.2.5:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 11

4 Setting up a project

This chapter describes how to set up a (IMaaS application) project. Setting up (i.e.: configuring) a new

project is essential, as it enables the IMaaS developer modeling capabilities within the context of the

current VS Code workspace folder. Without a project configuration, you are not able to create models

for your IMaaS application project.

Setting up a project is done via the Set Up Project button under the Models section of the OpenText

IMaaS Tools view (see Fig. 4.1). Note that this button is only available when a project has not yet

been set up. When clicked, the OpenText Project Properties configuration form opens (see Fig. 4.2).

Fig. 4.1:

Fig. 4.2:

The different project properties on the OpenText Project Properties configuration screen are:

• Project name: the name of the IMaaS application project; a default value is automatically filled

using the VS Code workspace folder name (this can be different from the application name itself)

• Application display name: the user-friendly name (i.e.: label) of the IMaaS application

• Application name: the unique (technical) name of the IMaaS application; a default value is

automatically filled using the (previously entered) application display name

• Application description: the description of the IMaaS application

• Application version: the version label of the IMaaS application, defaulted to “1.0”

• Application vendor: the name of the owner/vendor of the application

To save the project configuration, select Save from the File menu, or press Ctrl+S on your keyboard.

Once a project has been set up for the VS Code workspace (folder), the Models section shows the

model tree instead of the Set Up Project button. The model tree allows exploring and editing the

models that exist within the project (see Fig. 4.3).

Fig. 4.3:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 12

When a project has been set up, you can always view or modify the OpenText project properties from

the Model Explorer by choosing Project Properties from the contextual menu (see Fig. 4.4) and in

the VS Code Explorer view by choosing OpenText: Project Properties from the contextual menu of

your VS Code workspace (root) folder (see Fig. 4.5) or any of its subfolders, or by opening the

.otproject file (see Fig. 4.6):

Fig. 4.4:

Fig. 4.5:

Fig. 4.6:

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 13

5 Creating models

This chapter describes how to create models. Models are the configuration artifacts that define your

IMaaS application itself. Deploying an application effectively amounts to deploying the different

models to their respective IMaaS API endpoints in the OpenText™ API Cloud.

For each type of model, the OpenText™ IMaaS Tools provide a bespoke editor or modeler. To create

a new model and launch the corresponding modeler, there are three methods:

1. Through the button (see Fig. 5.1.1) or the New Model menu entry of the […] menu (see Fig.

5.1.2) of the Model Explorer (Models section of the OpenText IMaaS Tools).

Fig. 5.1.1:

Fig. 5.1.2:

This allows you to select the type of model you want to create (see Fig. 5.1.3). You are asked to

provide a model name when clicking the chosen model type.

Fig. 5.1.3:

2. Through the Command Palette (see Fig. 5.2). You are asked to provide a model name when

choosing one of the commands. Note that you can either use the OpenText: New Model

command (which behaves the same way as the previously explained method) or any of the

commands for direct creation of specific types of models.

Fig. 5.2:

Note that it is only allowed to create models in a model folder (the otresources folder that was

automatically generated when setting up the project, or one of its subfolders). This means that for the

above two methods, you need to save the model inside the otresources folder.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 14

3. From the Explorer view, through the OpenText: New Model menu entry (see Fig. 5.3.1) from the

contextual menu on a model folder (i.e.: the otresources folder or one of its subfolders).

Fig. 5.3.1:

This allows you to select the type of model you want to create (see Fig. 5.3.2). You are asked to

provide a model name when clicking the chosen model type.

Fig. 5.3.2:

The remainder of this chapter describes the different modelers and how to use them to create the

corresponding models.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 15

5.1 Creating a namespace

A namespace allows grouping the different types, traits, and workflows together (e.g.: within the

context of an application). For more information on namespaces, you can refer to the Define a

namespace, trait and "FILE" document type section in the Content Metadata Service (CMS) product

documentation or the Namespace resource documentation in the Content Metadata Service API

reference.

You can create a namespace via any of the three model creation methods. This opens the

namespace modeler (see Fig. 5.4).

Fig. 5.4:

The different model properties on the namespace modeler screen are:

• Display name: the user-friendly name (i.e.: label) of the namespace; this does not have to be

unique, and a default value is automatically filled using the model name you initially chose

• Name: the (technical) name of the namespace; this has to be unique (within your developer

tenant), and a default value is automatically filled using the display name

• Prefix: the prefix representing the namespace (used in system naming of traits and types that are

within that namespace); this has to be unique (within your developer tenant)

• Description: the description of the namespace

To save the namespace model, select Save from the File menu, or press Ctrl+S on your keyboard.

https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38#tag/Namespace

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 16

5.2 Creating a trait definition

A trait definition allows grouping several attributes into one more complex multi-attribute property. Trait

instances can be dynamically added to a type instance as part of the business process when using

the application, but they can also be made mandatory as a required trait in a type definition, so that

they must always be added when creating a new type instance. For more information on traits

(definitions and instances), you can refer to the Define a namespace, trait and "FILE" document type

and Create instances using custom type with trait sections in the Content Metadata Service (CMS)

product documentation or the Trait resource documentation in the Content Metadata Service API

reference.

You can create a trait (i.e.: a trait definition) via any of the three model creation methods. This opens

the trait modeler (see Fig. 5.5).

Fig. 5.5:

The different model properties on the trait definition modeler screen are:

• Namespace: the namespace to which the trait belongs; the namespace dropdown list is

populated with the namespaces that exist within the project, and you can opt not to select any

namespace

• Display name: the user-friendly name (i.e.: label) of the trait; this does not have to be unique,

and a default value is automatically filled using the model name you initially chose

• Name: the (technical) name of the trait; this has to be unique (within your developer tenant), and

a default value is automatically filled using the display name

• Description: the description of the trait

https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/8
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38#tag/Trait

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 17

• Attributes: the attributes list defines the different attribute definitions of the trait definition; to add

an attribute definition to a trait definition, you need to use the on the top right of the attributes

list; each attribute definition (see Fig. 5.6) has the following properties:

o Display name: the user-friendly name of the attribute; this does not have to be unique, but it

is recommended (to avoid confusion)

o Name: the technical name of the attribute; this has to be unique within a trait definition, and it

gets automatically populated for your convenience based on the display name you fill

o Data type: the data type of the attribute; this is a pick list (bigint, boolean, date, double,

integer, string and uuid)

o Default value: the default value for the attribute (i.e.: the value that gets automatically

assigned to the attribute when creating a new instance of the trait); whether it is possible to

assign a default value and how to assign it depends on the chosen data type

o Size: the size property only applies to the string data type and can thus only be chosen when

picking the string data type; it represents the maximum length constraint for the string

attribute

o Repeating: whether or not the attribute is multi-valued (can have multiple values)

o Unique: whether or not the attribute needs to be unique across all instances of the trait

o Required: whether or not the attribute must be filled upon creation

o Read-only: whether or not the attribute can be modified after creation

o Searchable: whether or not the attribute can be filtered against when performing a search

o Sortable: whether or not the attribute can be used to sort a search result

Fig. 5.6:

• Indexes: for performance and/or unique constraints reasons, it is possible to create indexes for

certain attributes or a combination of attributes; the indexes list defines the different index

definitions of the trait definition; to add an index definition to a trait definition, you need to use the

 on the top right of the indexes list; each index definition (see Fig. 5.7) has the following

properties:

o Name: the name of the index

o Columns: the different columns (i.e.: attributes) to which the index applies

o Unique: whether or not a unique constraint needs to be enforced

Fig. 5.7:

To save the trait definition model, select Save from the File menu, or press Ctrl+S on your keyboard.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 18

5.3 Creating a type definition

A type definition is the main component for building your application’s (custom) data model. A type

definition has its own attributes and required traits (i.e.: traits that are always added to the type

instance upon creation). A type definition can be of four categories: object (i.e.: object with metadata,

but no content), file (i.e.: document with metadata and content), folder (i.e.: container for subfolders,

objects and files) or relation (i.e.: relates/links type instances with each other). Type definitions also

allow for inheritance within the same category (i.e.: base type). For more information on types

(definitions and instances), you can refer to the Define a namespace, trait and "FILE" document type

and Create instances using custom type with trait sections in the Content Metadata Service (CMS)

product documentation or the Type resource documentation in the Content Metadata Service API

reference.

You can create a type (i.e.: a type definition) via any of the three model creation methods. This opens

the type modeler (see Fig. 5.8).

Fig. 5.8:

The different model properties on the type definition modeler screen are:

• Namespace: the namespace to which the type belongs; the namespace dropdown list is

populated with the namespaces that exist within the project, and you can opt not to select any

namespace

• Display name: the user-friendly name (i.e.: label) of the type; this does not have to be unique,

and a default value is automatically filled using the file name you initially chose

• Name: the (technical) name of the type; this has to be unique (within your developer tenant), and

a default value is automatically filled using the display name

• Category: the type category to which the type belongs; this can be object, file, folder or relation

• Parent: the parent type for the type, if it is a subtype of another; the parent dropdown list is

populated with the types of the same category that exist within the project

• Description: the description of the type

https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/8
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38#tag/Type

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 19

• Attributes: the attributes list defines the different attribute definitions of the type definition; to add

an attribute definition to a type definition, you need to use the on the top right of the attributes

list; each attribute definition (see Fig. 5.9) has the following properties:

o Display name: the user-friendly name of the attribute; this does not have to be unique, but

this is recommended (to avoid confusion)

o Name: the technical name of the attribute; this has to be unique within a type definition, and it

gets automatically populated for your convenience based on the display name you fill

o Data type: the data type of the attribute; this is a pick list (bigint, boolean, date, double,

integer, string and uuid)

o Default value: the default value for the attribute (i.e.: the value that gets automatically

assigned to the attribute when creating a new instance of the type); whether it is possible to

assign a default value and how to assign it depends on the chosen data type

o Size: the size property only applies to the string data type and can thus only be chosen when

picking the string data type; it represents the maximum length constraint for the string

attribute

o Repeating: whether or not the attribute is multi-valued (can have multiple values)

o Unique: whether or not the attribute needs to be unique across all instances of the type

o Required: whether or not the attribute must be filled upon creation

o Read-only: whether or not the attribute can be modified after creation

o Searchable: whether or not the attribute can be filtered against when performing a search

o Sortable: whether or not the attribute can be used to sort a search result

Fig. 5.9:

• Required traits: the required traits list defines the different mandatory traits for the type definition;

each required trait definition (see Fig. 5.10) has the following properties:

o Instance name: the name of the required trait instance; this must be unique across the type

definition’s required traits

o Trait name: the selected trait definition for the required trait instance; the trait name

dropdown list is populated with the trait definitions that exist within the project

Fig. 5.10:

• Indexes: for performance and/or unique constraints reasons, it is possible to create indexes for

certain attributes or a combination of attributes; the indexes list defines the different index

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 20

definitions of the type definition; to add an index definition to a type definition, you need to use the

 on the top right of the indexes list; each index definition (see Fig. 5.11) has the following

properties:

o Name: the name of the index

o Columns: the different columns (i.e.: attributes) to which the index applies

o Unique: whether or not a unique constraint needs to be enforced

Fig. 5.11:

For type definitions of category relation (where the Category property is relation) an additional

Relation tab is displayed (see Fig 5.12) to allow filling the different relation specific properties:

• Source display name: a user-friendly name for the relation source type (typically the meaning of

the source type in the relation)

• Source type: the type definition for the source type

• Target display name: a user-friendly name for the relation target type (typically the meaning of

the target type in the relation)

• Target type: the type definition for the target type

• Cardinality: the relation cardinality (can by “One to one”, “One to many” or “Many to many”)

• Direction: the direction of the relation (currently this can only be “SOURCE_TO_TARGET”)

• Integrity type: what to do upon deletion of relation source or target

Fig. 5.12:

To save the type definition model, select Save from the File menu, or press Ctrl+S on your keyboard.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 21

5.4 Creating a workflow definition

A workflow definition represents an executable process model from which process instances are

created. The executable process model is stored as BPMN 2.0 encoded JSON. For more information

on Workflow Service process models and process instances, you can refer to the Workflow Service

product documentation , the Workflow Modeler product documentation or the Workflow Service API

reference.

You can create a workflow (i.e.: a workflow definition) via any of the three model creation methods.

This opens the workflow modeler (see Fig. 5.13).

Fig. 5.13:

For an exhaustive user guide of the workflow modeler, please refer to the Workflow Modeler product

documentation.

To save the workflow model, select Save from the File menu, or press Ctrl+S on your keyboard.

https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/8c2eb4491d04c0b6eb65e4084979a0f8/page/1
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/8c2eb4491d04c0b6eb65e4084979a0f8/page/1
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1
https://developer.opentext.com/apis/523afd8e-0180-4500-91fa-713df27b8f19/c1519bcf-64ae-4a72-a472-2d7da5f5ea61/cff45d1c-f9fc-47dd-9929-22f91e2c76d5
https://developer.opentext.com/apis/523afd8e-0180-4500-91fa-713df27b8f19/c1519bcf-64ae-4a72-a472-2d7da5f5ea61/cff45d1c-f9fc-47dd-9929-22f91e2c76d5
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 22

5.5 Creating a group

A (user) group can be used in the context of security (e.g.: as an accessor in an ACL), but also to

represent a group of users that have a certain role for the application you are building. Groups can be

nested (i.e.: one group can contain one or more other groups).

Adding users to a group is only possible once the group has been deployed (i.e.: this is a runtime and

not a design-time activity). It can be done through the Admin Center, which can be opened from the

Console view for your developer organization on developer.opentext.com. More specifically, you

have to add users to the (subscription) groups that have been created inside of the application

subscriptions. As there can be multiple application subscriptions in your organization (even multiple

subscriptions in one tenant), you need to make sure that you add the users within the context of a

specific subscription to the deployed application. This allows using multiple instances/subscriptions of

the same application within the same organization or even tenant, each with a different set of users.

You can create a group via any of the three model creation methods. This opens the group modeler

(see Fig. 5.14).

Fig. 5.14:

The different model properties on the group modeler screen are:

• Group name: the name of the group; this has to be unique (within your subscription)

• Description: the description of the group

• Groups: the list of groups contained within the group (you can look up and select any group

existing in the project); the list of contained groups shows the Group name and Description

properties of the contained/nested groups

To save the group model, select Save from the File menu, or press Ctrl+S on your keyboard.

https://developer.opentext.com/resources/documentation/3a7bfdae-4cd3-465c-8485-c887f65def9b/8fc1af96ae75d94a95eedb6daefb6975/page/1

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 23

6 Deploying a project

This chapter describes how to deploy a project (i.e.: the application with its models) to the IMaaS API

endpoints in the OpenText™ API Cloud. To be able to deploy a project, you must have set up an

organization profile.

Deploying a project can be done via the More Actions menu (see Fig. 6.1) or the workspace (root)

folder’s contextual menu (see Fig. 6.2) in the Explorer view, or via the Deploy to Default Tenant

command in the Command Palette (see Fig. 6.3), or via the More Actions menu of the model

explorer in the OpenText IMaaS Tools view (see Fig 6.4).

Fig. 6.1:

Fig. 6.2:

Fig. 6.3:

Fig. 6.4:

When deploying your application for the first time, the Output view automatically opens and displays

the OT Deployment output. It contains the tenant ID and (application) API key data. These need to be

kept securely, as they are to be used in your project code to authenticate/communicate with the

IMaaS APIs in context of your application.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 24

Once deployed, an application corresponding with your IMaaS project can be found in the Console

view of your developer organization on developer.opentext.com.

Using the Deploy to Default Tenant option deploys your project to the default tenant in the default

organization. In case an organization profile does not have any tenants configured for it, then

deployment of the project is done to all tenants in corresponding organization.

To deploy your project to another organization or tenant mark that as default before triggering

deployment.

In case you somehow lost the API key data for your application in a specific tenant then you can

recreate this from the Developer Console.

OpenText™ IMaaS Tools for VS Code 22.3.5 User Guide 25

7 Using the otcloud Command Line Interface

COMING SOON

Copyright © 2022 Open Text. All Rights Reserved.

Trademarks owned by Open Text. One or more patents may cover this product. For more information, please visit https://www.opentext.com/patents.

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication. However, Open Text Corporation and its affiliates accept

no responsibility and offer no warranty whether expressed or implied, for the accuracy of this publication.

26

8 Contact information

OpenText Corporation

275 Frank Tompa Drive

Waterloo, Ontario

Canada, N2L 0A1

For more information, visit www.opentext.com

https://www.opentext.com/patents
https://www.opentext.com/

