
OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 1

OpenText Cloud
Developer Tutorial
Building a Contract Approval application

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 2

This tutorial has been created for software version OpenText™ Cloud Developer Tools for VS

Code 22.4.1.

It is also valid for subsequent software releases unless OpenText has made newer documentation

available with the product, on an OpenText website, or by any other means.

Note that if you are using this tutorial with a later version of the OpenText™ Cloud Developer Tools

for VS Code, the screenshots and usage might not always correspond.

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Tel: +1-519-888-7111

Toll Free Canada/USA: 1-800-499-6544 | International: +800-4996-5440

Fax: +1-519-888-0677

Support: https://support.opentext.com

For more information, visit http://www.opentext.com

Copyright © 2022 Open Text. All Rights Reserved.

Trademarks owned by Open Text.

One or more patents may cover this product. For more information, please visit

https://www.opentext.com/patents

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this

publication. However, Open Text Corporation and its affiliates accept no responsibility and offer no

warranty whether expressed or implied, for the accuracy of this publication. This includes the

application code that is being provided with this tutorial, as this code is intended for educational

purposes only and should not be used in a production setting.

Last updated: 09/26/2022

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 3

Contents
1 Introduction .. 4

2 Prerequisites .. 5

2.1 [20’] Setting up an OpenText Developer Trial Account 5

3 Building the Contract Approval application ... 16

3.1 [25’] Setting up the Cloud Developer IDE .. 16

3.2 [10’] Adding an organization and testing the connection 32

3.3 [15’] Creating an OpenText project .. 37

3.4 [10’] Creating a namespace ... 45

3.5 [15’] Creating a trait definition .. 48

3.6 [20’] Creating a file type definition ... 53

3.7 [10’] Creating a file type definition that is a subtype 60

3.8 [05’] Creating a folder type definition ... 63

3.9 [120’] Creating a workflow model .. 65

3.10 [10’] Deploying the application to the IM services 121
Adding the redirect URL for your application authentication flow 126
Resetting the Tenant password ... 128

3.11 [25’] Working with the IM APIs ... 132

3.12 [20’] Building the application .. 148

3.13 [50’] Testing your application ... 159

3.14 [00’] Bonus exercise: Using the otcloud Command Line Interface 186

About OpenText .. 187

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 4

1 Introduction

This document is intended as a comprehensive course for pro-code developers who want to learn

how to build applications that utilize the OpenText IM (Information Management) APIs, and how to do

this in the most efficient way. More specifically, it shows how to develop a React based application in

VS Code (Microsoft Visual Studio Code). The OpenText Cloud Developer functionality is added to the

standard VS Code IDE (Integrated Development Environment) when you install the OpenText Cloud

Developer Tools VS Code extension pack.

The application you will be building is a simple Contract Approval application which will allow to

upload documents, store document related metadata for two types of contracts, do document analysis

to detect PII (Personally Identifiable Information), and use a workflow to automate the different

contract approval steps.

In this context, the following IM services will be used:

• The Content Storage Service (CSS) for uploading and storing of documents

• The Content Metadata Service (CMS) for storing document metadata

• The OpenText Magellan Risk Guard Service for document analysis

• The Workflow Service for executing the contract approval process

In different step-by-step exercises throughout the document, we will cover the creation of models

(configuration artifacts) and how to deploy them, how to write code that talks to the IM APIs, and how

to run and test the finished Contract Approval application. Each exercise builds on the previous one,

so you need to perform the steps exactly as written in the order in which they are presented, and

without skipping any. It should take about 6 to 8 hours to complete the tutorial. You can complete all

the exercises in a single session or break them up into multiple sessions.

This is what you will learn in the different exercises, and how much time it requires:

• [25’] Setting up the Cloud Developer IDE

• [10’] Adding an organization and testing the connection

• [15’] Creating an OpenText project

• [10’] Creating a namespace

• [15’] Creating a trait definition

• [20’] Creating a file type definition

• [10’] Creating a file type definition that is a subtype

• [05’] Creating a folder type definition

• [120’] Creating a workflow model

• [10’] Deploying the application to the IM services

• [25’] Working with the IM APIs

• [20’] Building the application

• [50’] Testing your application

• [00’] Bonus exercise: Using the otcloud Command Line Interface

This tutorial is a complete “from scratch” application building guide. However, if you don't want to build

the application but still want to familiarize yourself with the IM API consuming example code, the

different models, and the Contract Approval sample application, you can directly open the finished

application in VS Code without the need to completely go through all the exercises. The project

sources for the completed Contract Approval application are available to be downloaded to your

computer. To directly run the completed project from VS Code, you can skip ahead to the Testing

your application section.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 5

2 Prerequisites

As this is a complete end-to-end application building guide, we will be going through the downloading

and installation of the required software and source code as part of the different tutorial steps. The

only prerequisite to be able to start with the first exercise is that you have signed up for the OpenText

Developer trial account, and that this trial has not yet expired. If you do not yet have your own trial

account set up, please follow the instructions in this chapter.

Also note that although you could theoretically use another OpenText Developer subscription than the

aforementioned trial account, we recommend you still set up and use a trial account, as this tutorial

has been explicitly constructed in that context. I.e.: differences between the trial account and another

subscription might result in you getting stuck, or at least needing to deviate from the exact steps laid

out in the tutorial.

2.1 [20’] Setting up an OpenText Developer Trial
Account

As previously stated, this tutorial requires using a trial account to avoid running into issues related to

differences between subscriptions.

To set up an OpenText Developer free trial Account, proceed as follows:

• Navigate to https://developer.opentext.com.

https://developer.opentext.com/

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 6

• If you already have an OpenText Connect account, you can immediately skip to the next step to

Sign in with your OpenText Connect account.

However, if you do not yet have an OpenText connect account, follow the following steps to sign

up for one.

Click Sign up.

Fill your personal information and click Next to continue.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 7

Use your email address for the User ID (IMPORTANT: this has to be you email address),

choose a password, confirm you are “not a robot”, and confirm you have read the Privacy Policy.

Click Next to continue with the OpenText Connect account creation.

Review your account creation information and click Submit to create your new OpenText

Connect account.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 8

Open your email client and click Activate your account from the “Action required: Activate your

account” email you have received (make sure it did not get blocked or moved to your spam

folder).

The account activation link should take you to a confirmation page from which you can log in to

the newly created OpenText Connect account.

No need to log in from here, just close (all open instances of) your web browser to ensure a “fresh

browser context” and navigate to https://developer.opentext.com to sign in with your newly

created OpenText Connect account.

https://developer.opentext.com/

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 9

• To sign up for a trial account you need to sign in to your OpenText Connect account first. Click

Sign in.

Fill your email and password and click Sign in.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 10

On the developer welcome page, scroll down to Cloud Developer Plans and click on Learn

more.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 11

Select to Sign Up for the Free (Trial) Cloud Developer Plan.

REMARK:
If you already had an account (did not just create one) and did previously sign up for the Trial plan
with that account, the Sign Up button of the Free (Trial) will be disabled (you cannot click it).

In this case, if your trial expired, you need to request an extension. If it did not expire (or if you got
your extension), you are good to go and skip ahead to Building the Contract Approval application.
Beware though, that during the tutorial you will require the organization connection details from the
organization config file that was provided during the Trial sign up process. If you don’t have this
anymore, you can get the required organization connection information through the developer
console’s Organization information screen (ID value and Manage button provide the organization id
and organization client information).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 12

On the OpenText Developer trial registration form, fill the following information:

o Organization: the name of your organization; this will be used in the developer environment

as the actual name of your developer organization, so make sure to choose it correctly

o Country: your country

o State/province: depending on the selected country, you might have to fill your state or

province as well

o Purpose: the purpose for which you are registering for the OpenText Developer free trial

account

o You’ll need to check both the trial agreement and marketing communications and

information regarding products, services and events check boxes

Once the registration form is correctly filled, click Try now to start the 90-day trial.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 13

You are now presented with the confirmation that your 90-day free trial has started.

IMPORTANT:
The 90-day trial confirmation screen contains important information, so make sure not to skip the
next steps (under Your next steps) of copying the OT2 Service Password and downloading the
organization config file.
You will need the organization configuration details later on in this tutorial (and won’t be able to
retrieve them beyond this point). The OT2 Service Password is not required in context of this
tutorial, but if you ever need it when interacting with IM APIs at the organization level, you will also
not be able to retrieve it beyond this point (reset pwd is possible though).

As per the above important remark, make sure you click the Download your organization

config file link.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 14

Create a folder (e.g.: organization_config) to store all organization related configuration for the

Cloud Developer tutorial and save the ot2_config_<organization name, we are using My

Organization Name>.json organization configuration file in that newly created folder.

It is also very important you copy the OT2 Service Password from the trial confirmation screen

and keep it for later use (even if we don’t use it in this tutorial). We suggest you create an

ot2_service_password.txt file next to the previously saved organization configuration file (inside

of the new organization configuration folder) that contains the copied service password.

IMPORTANT:
Although we are using unencrypted/insecure text files to store the different key and password
information for the purpose of this tutorial, it is of course recommended for real life scenarios to
store any API key or password information in a secure way.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 15

Once you have saved the OT2 Service Password and organization configuration file, click Go to

console to go to the Cloud Developer console.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 16

3 Building the Contract Approval

application

This is the chapter throughout which you will be setting up your OpenText Cloud development

environment, and build, deploy and test the Contract Approval application.

It consists of 14 subsequent exercises that build on top of each other, so you cannot skip ahead, and

it is very important you perform the exercises exactly as described.

That being said, if you are only interested in running the application and having a look at the finished

project (incl. its models and code), you can choose to skip to Testing your application.

Of course, we recommend you go through all 14 exercises. In that case, you should start with the first

exercise in this chapter (section 3.1) which details setting up your Cloud Developer IDE.

3.1 [25’] Setting up the Cloud Developer IDE
This exercise will guide you through the downloading and installing of Microsoft Visual Studio Code

(VS Code) and the adding of the Cloud Developer Tools VS Code extension pack to your VS Code

installation.

Once you are done with this section, you will have set up your Cloud Developer IDE, and you are

ready to set up a connection to your Cloud Developer organization.

To set up your Cloud Developer IDE, proceed as follows:

• Navigate to https://code.visualstudio.com/download to download the Microsoft Visual Studio Code

distribution that matches your system.

https://code.visualstudio.com/download

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 17

IMPORTANT:
Note that we have currently tested the OpenText Cloud Developer Tools for VS Code with Windows
and macOS systems.
You can decide to use Linux, but if you run into problems on a Linux system, OpenText may not be
able to provide you with a solution. Simply put, if you cannot perform the steps laid out in this tutorial
when on a Linux system, you will have to switch to Windows or macOS.

In this tutorial, we will only provide you with the steps to perform the setting up of the (User

Installer based) VS Code version for Windows 10.

For other OS type systems or other versions of VS Code, you can follow the installation steps as

outlined below as a guideline, but if the installation process is different, please refer to the VS

Code documentation for further help.

Also note that we recommend you install the latest version of VS Code, but that throughout the

tutorial we will be using the current latest version for Windows 10 (1.67.2 64-bit), so if you have a

different version and/or system, the screen shots might not always exactly match.

• If you are installing VS Code on a 64-bit Windows 10 system, choose to download the 64 bit

User Installer for Windows.

Save and run the installer.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 18

Select I accept the agreement and click Next > to continue.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 19

Select the installation destination location and click Next >. You can use the suggested default

location.

Keep the default setting for the selecting of the start menu folder and click Next >.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 20

Select all additional tasks under Other and optionally select Create a desktop icon. Click Next >

to continue.

Verify all your choices and click Install to start the VS Code installation.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 21

Once the installation is complete, you can click Finish to close the VS Code Setup Wizard

(optionally leaving the Launch Visual Studio Code checkbox checked).

Once VS Code is installed, if not already open, you can open it by typing “vs code” in the

Windows Start Menu search box and selecting the Visual Studio Code App.

Feel free to Pin to taskbar for later easy access from the taskbar.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 22

When opening VS Code for the first time, you are presented with the Get Started with VS Code

wizard. Just perform the first activity of Choose the look you want by selecting the theme of

your choosing. We are selecting the Dark theme.

Click Mark Done to confirm your choice.

The standard VS Code Get Started welcome page now displays.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 23

You can uncheck the Show welcome page on startup and close the Get Started page so that it

will no longer display when you open VS Code.

You are now ready to add the OpenText Cloud Developer Tools for VS Code to your VS Code

IDE to enable the Cloud Developer capabilities directly in VS Code.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 24

• The OpenText Cloud Developer Tools VS Code extension pack is available in the VS Code

Marketplace, and you can install it directly from VS Code.

The VS Code Activity Bar on the left side lets you quickly switch between different views. To

access the VS Code Marketplace, you need to click to switch to the Extensions view.

In the Search Extensions in Marketplace search bar, type opentext and choose to install the

OpenText Cloud Developer Tools - Extension Pack.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 25

If asked, you can click Reload to ensure the VS Code extension pack you just installed gets

properly enabled.

To confirm that the OpenText Cloud Developer Tools for VS Code are installed and working

correctly, you can now switch to the OpenText Cloud Developer Tools view from the Activity

Bar on the left side by clicking .

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 26

• Although you have now installed your VS Code IDE with the OpenText Cloud Developer Tools

extension pack, you also need to install the latest Long-Term Support (LTS) version of Node.js (at

the time of writing of this tutorial it is 16.15.0), as you require this to support building and running

the Contract Approval application specifically.

To install Node.js 16.15.0, navigate to https://nodejs.org/en/download/, and download and run the

correct installer for your OS.

Like with the VS Code installation earlier, we will only go through the steps of the Node.js set up

process for Windows 10. If you are installing another version of Node.js or are installing on

another OS or version of Windows, screenshots and installation steps might differ.

https://nodejs.org/en/download/

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 27

Click Next to continue.

Select I accept the terms in the License Agreement and click Next to continue.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 28

Select the installation destination location and click Next. You can use the suggested default

location.

From the Custom Setup screen, we recommend you accept the default and just click Next.

Select to Automatically install the necessary tools and click Next.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 29

Click Install to start the installation.

Once the setup has completed, you can click Finish to close the Node.js Setup Wizard.

Press a key (e.g.: space bar) several times to run through the installation of the Additional Tools

for Node.js.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 30

Depending on the components that are already existing on your system, PowerShell will install all

the remaining necessary tools. Once done, press Enter to exit the PowerShell window that

popped up.

If the PowerShell process seems to hang without a “Type Enter to exit” instruction (e.g.: in the

below screenshot it hangs on “Created a UnelevatedInstallerTelemetryDecorator”), you can select

the PowerShell window and try to push the installation forward by pressing Enter. This might not

succeed immediately (i.e.: nothing happens), but when the installation process is ready to

proceed, pressing Enter will result in continuing and when entirely done, the PowerShell window

will close.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 31

Node.js is now installed. Let’s quickly verify that VS Code is ready to use it when running your

Node.js code. If you left VS Code open while installing Node.js, just close and open it again to

ensure the fresh install of Node.js is picked up.

In VS Code open a new Terminal.

In the newly opened Terminal, type npm version and confirm node is indeed of version 16.15.0.

You are now ready to start building your Contract Approval Application project.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 32

3.2 [10’] Adding an organization and testing the
connection

During this exercise you will add the organization you previously created (when registering for an

OpenText Developer free trial Account) to your VS Code OpenText Cloud Developer user settings.

You will also test the connection to your organization, to ensure all is indeed set up correctly. The

purpose of adding an organization is that you will later be able to deploy the application you have built

into the organization, and more specifically the corresponding single developer tenant.

Once you are done with this section, you will have set up your Cloud Developer organization

connection, and you are ready to start creating your Contract Approval application project.

To add your organization to your user settings and test the connection, proceed as follows:

• Open the ot2_config_<organization name, we are using My Organization Name>.json

organization configuration file you previously saved in a text editor. We recommend you use

Notepad++ with the JSON Viewer plugin installed, so that you can format the

ot2_config_<organization name>.json file to be more easily consumable (as shown in below

screen shots). This is not required though to perform the steps in this exercise, as any text editor

will allow you to copy the different required values.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 33

• You can add the organization connection configuration by adding a new Organization Profile. To

do this, open VS Code, select the OpenText Cloud Developer Tools view from the Activity Bar

on the left side, and click the button in the PROFILES section.

Fill the different authentication profile property values on the Organization Profile creation form as

follows:

o Profile name: you can leave the Default value here

o Organization name: the name you chose for your organization

o Organization ID: copy/paste the value of the organization_id JSON property from the

ot2_config_<organization name>.json organization config file, which you previously opened in

a text editor

o Public client ID: copy/paste the value of the client_public_id JSON property from the

ot2_config_<organization name>.json organization config file, which you previously opened in

a text editor

o Region: you can leave this to na-1-dev

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 34

To save the authentication profile configuration, select Save from the File menu, or press Ctrl+S

on your keyboard.

The “new profile” tab now indeed indicates that the authentication profile configuration has been

saved, as it no longer displays as unsaved (and indeed has been renamed to “Default”).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 35

REMARK:
Note that all OpenText Cloud Developer Tools configuration artifacts, such as the previously set up
organization connection, but also the project set up and different model configurations, use the
standard VS Code file saving functionality. I.e.: to save your changes to any configuration artifact,
you can always press Ctrl+S on your keyboard (for Windows systems) or use the Save menu entry
from the File menu. You will also be presented with a “Do you want to save the changes you made
to …?” dialog box when you try to close an unsaved configuration artifact.

• Directly from the Organization Profile form, click Connect to test the newly configured connection

to your developer organization.

If not already connected (from an open session in your web browser), you will need to fill your

OpenText Connect account username (email address) and password and click Sign in.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 36

A pop-up message on the bottom right confirms that the authentication has completed

successfully.

In addition to the authorization confirmation message, the “Warning: You are not authenticated”

warning message should now no longer appear, indicating that you indeed have successfully

authenticated with your configured organization.

You can now close the Organization Profile configuration screen.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 37

3.3 [15’] Creating an OpenText project
During this exercise you will create the folder on your file system in which you will be building your

application. You will also set up your OpenText project. This includes filling the different application

properties, which will be used to create the Contract Approval application in your developer

organization when deploying the project for the first time. It is required to set up an OpenText project

before you can start building your application components (or models).

Once you are done with this section, you will have set up your OpenText project, and you are ready to

start creating the Contract Approval namespace.

To create an OpenText project for your Contract Approval application, proceed as follows:

• Use your system’s file system explorer (example shows Windows File Explorer) to create a new

contract_approval folder.

• Choose one of the following two options to open the Contract Approval project folder in VS Code:

o OPTION 1:

If you are using Windows (and you followed the VS Code installation instructions exactly as

described in this tutorial), in the Windows File Explorer, right-click the newly created

contract_approval folder and select the Open with Code contextual menu item to open the

Contract Approval project folder in VS Code.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 38

o OPTION 2 (should work with all Operating Systems):

Alternatively (if the contextual menu option is not available), you can use VS Code’s Open

Folder button from the Explorer view in the Activity Bar.

• Once the contract_approval folder is open in VS Code, choose to Trust the authors of all files

in the parent folder ‘…’ and click the Yes, I trust the authors button.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 39

• Although you can now start creating files from VS Code in your Contract Approval application

project folder, you still need to set up the OpenText project to be able to start building models. To

set up the OpenText project, switch to the OpenText Cloud Developer Tools view and click the

Set Up Project button.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 40

Fill the OpenText Project Properties as follows:

o Project name: the project name has been automatically populated from the project folder

name (contract_approval) and does not require changing

o Application display name: Contract Approval

o Application name: when filling the application display name, the system will automatically

populate the application name and you can leave the generated contract_approval value

o Application version: 1.0

o Application vendor: you can use any company name you like; we are using My Company

o Application description: Contract Approval Application built on top of the OpenText

Cloud Platform

You can now save and close the OpenText Project Properties form.

Depending on whether or not you have Java installed on your system, you will get the following

warning message popping up in the bottom right of VS Code (when Java is not installed).

You can choose to simple close this message (clicking OK) or to not display it again (clicking

Don’t display again). Whichever option you chose, as long as Java is not installed you will

always find the warning message in the PROBLEMS tab:

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 41

• If you previously got the Validation of Workflow Models disabled; please install the latest

version of Java warning message, please continue with the next steps to install Java on your

system.

If Java is already installed (you did not get any warning message), you can directly start with the

next exercise section (Creating a namespace) as your OpenText project has been set up and you

are ready to start creating models.

Before you do though, note that you can always view and modify the OpenText project properties

from the VS Code Explorer view by choosing OpenText: Project Properties from the contextual

menu of your project (root) folder or any of its subfolders, or by clicking/opening the .otproject

file:

Or

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 42

• Although you can choose to install any Java distribution (OpenJDK, Oracle or other) on your

system, for your convenience we are providing you with the steps to install the Oracle Java

version. To install Java on your system, first navigate to

https://www.oracle.com/java/technologies/downloads.

At the time of writing of this tutorial, Java 17 LTS (we recommend you use the latest LTS version)

and the corresponding JDK 17 binaries are free to use in production and free to redistribute, at no

cost, under Oracle No-Fee Terms and Conditions (feel free to read this for more information).

In that context we recommend you install the Java SE Development Kit 17 version that

corresponds with your OS on your system (currently 17.0.3.1).

For this tutorial we will be using the x64 MSI Installer for Windows. If you are also on a Windows

machine, feel free to use the https://download.oracle.com/java/17/latest/jdk-17_windows-

x64_bin.msi link.

https://www.oracle.com/java/technologies/downloads
https://java.com/freeuselicense
https://download.oracle.com/java/17/latest/jdk-17_windows-x64_bin.msi
https://download.oracle.com/java/17/latest/jdk-17_windows-x64_bin.msi

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 43

Save and run the jdk-17_windows-x64_bin.msi installer.

Choose Next > to start with the Java SE Development Kit installation process.

Click Next to accept the default installation folder (feel free to change it, if needed).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 44

Once the installation is complete, click Close to exit the installation wizard.

Close and reopen VS Code, and you should now see that the Validation of Workflow Models

disabled; please install the latest version of Java warning message does no longer appear

(not as a pop up in the bottom right and not in the PROBLEMS tab).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 45

3.4 [10’] Creating a namespace
During this exercise you will create the Contract Approval namespace model. A namespace allows

grouping the different type and trait definitions together (e.g.: within the context of an application). For

more information on namespaces, you can refer to the Define a namespace, trait and "FILE"

document type section in the Content Metadata Service product documentation or the Namespace

resource documentation in the Content Metadata Service API reference.

Once you are done with this section, you will have created the namespace that corresponds with your

Contract Approval application, and you are ready to start creating the Approval trait definition.

To create the Contract Approval namespace, proceed as follows:

• In VS Code, switch to the OpenText Cloud Developer Tools view.

As you can see, since your OpenText project has been set up, the MODELS section shows a tree

view that allows exploring the different models in your application project.

• To create a new namespace, click at the top right of the MODELS section and from the menu

that drops down from the top of VS Code, select New Namespace.

https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38#tag/Namespace

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 46

In the input box that appears at the top of VS Code, fill contract_approval as the name for the

new namespace and press Enter.

Fill the namespace properties as follows:

o Display name: the display name is the user-friendly name for the namespace; this does not

have to be unique, and it has been automatically populated for your convenience based on

the previously chosen namespace name (the model file name); you should best leave the

value to be Contract Approval as it nicely aligns with the model file name and model name

o Name: the name is the technical name for the namespace; this has to be unique (within your

developer tenant), and it has been automatically populated for your convenience based on

the previously chosen namespace name (the model file name); you should best leave the

value to be contract_approval as it nicely aligns with the model file name and model display

name

o Prefix: the prefix is the prefix representing the namespace (used in system naming of traits

and types that are within that namespace); this has to be unique (within your developer

tenant); please fill ca as its value

o Description: Contract Approval Namespace

REMARK:
Note that for the current namespace model creation exercise we are using the from the MODELS
section in the OpenText Cloud Developer Tools view. From the MODELS section you could also
have used the […] menu and the New Model menu entry instead of the button. There are two
more ways to create models and those will be illustrated in the next tutorial exercises.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 47

You can now save and close the Contract Approval namespace model. Saving will pop up a

Save As file saving dialog box. Make sure to select the otresources folder as target folder, leave

the file name as is (contract_approval.cmns) and click Save.

IMPORTANT:
The otresources folder is the model folder and it was automatically generated during the project
setup. It is important you create all models inside this otresources folder, as the system will refuse
to store models anywhere else.

The model explorer tree in the MODELS section should now show your new contract_approval

namespace under /Namespaces. The model explorer shows the different models according to

their unique key (which in context of a namespace is the name property).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 48

3.5 [15’] Creating a trait definition
During this exercise you will create the Approval trait definition model. A trait definition allows

grouping several attributes into one more complex multi-attribute property. Trait instances can be

dynamically added to a type instance as part of the business process when using the application, but

they can also be made mandatory as a required trait in a type definition, so that they must always be

added when creating a new type instance. For the purpose of this tutorial, we will be using the

concept of mandatory traits to represent the different approval steps on a contract (hence the

Approval name of the trait definition). For more information on traits (definitions and instances), you

can refer to the Define a namespace, trait and "FILE" document type and Create instances using

custom type with trait sections in the Content Metadata Service product documentation or the Trait

resource documentation in the Content Metadata Service API reference.

Once you are done with this section, you will have created the trait definition that corresponds with

your Contract Approval application’s approval steps, and you are ready to start creating the Contract

type definition.

To create the Approval trait definition, proceed as follows:

• In VS Code, switch to the OpenText Cloud Developer Tools view.

https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/8
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/8
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38#tag/Trait

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 49

• To create a new trait definition, press F1 on your keyboard (or Ctrl+Shift+P if F1 doesn’t work).

This opens the Command Palette at the top of VS Code.

In the Command Palette, type trait and you should see the command list being filtered to show

the OpenText: New Trait command near the top (in the case of this tutorial it’s the first entry).

Select the OpenText: New Trait command.

In the input box that appears, fill approval as the name for the new trait definitions and press

Enter.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 50

Fill the trait definition properties as follows:

o Namespace: the namespace to which this trait definition belongs; as you previously created

the contract_approval namespace, you can now select it as the namespace for your trait

definition

REMARK:
Note that the OpenText Cloud Developer Tools dynamically update the different model
reference lists. In the context of this trait definition, the list of available namespaces is
dynamically updated when you add namespaces, but e.g., in context of type definitions, the list
of available traits and parent types will also update, based on the available trait and type
definitions.

o Display name: the display name is the user-friendly name for the trait definition; this does not

have to be unique, and it has been automatically populated for your convenience based on

the previously chosen trait definition name (the model file name); you should best leave the

value to be Approval as it nicely aligns with the model file name and model name

o Name: the name is the technical name for the trait definition; this has to be unique in context

of the selected namespace (and the combination of namespace and trait definition name

needs to be unique within your developer tenant), and it has been automatically populated for

your convenience based on the previously chosen trait definition name (the model file name);

you should best leave the value to be approval as it nicely aligns with the model file name

and model display name

o Description: Approval Trait

o Attributes: the attributes list defines the different attribute definitions of the trait definition;

each attribute definition has the following properties:

▪ Display name: the display name is the user-friendly name for the attribute definition; this

does not have to be unique, but this is recommended (to avoid confusion)

▪ Name: the name is the technical name for the attribute definition; this has to be unique

within the trait definition, and it gets automatically populated for your convenience based

on the display name you fill

▪ Data type: the data type of the attribute; this is a pick list (bigint, boolean, date, double,

integer, string and uuid)

▪ Default value: you can assign a default value for the attribute (i.e.: the value that gets

automatically assigned to the attribute when creating a new instance of the trait

definition); whether it is possible to assign a default value and how to assign it depends

on the chosen data type (e.g.: a date data type gets a date picker, and a uuid data type

doesn’t allow for a default value)

▪ Size: the size property only applies to the string data type and can thus only be chosen

when picking the string data type; it represents the maximum length constraint for the

string attribute

▪ Repeating: whether or not the attribute is multi-valued (can have multiple values)

▪ Unique: whether or not the attribute needs to be unique across all instances of the trait

definition

▪ Required: whether or not the attribute must be filled upon creation

▪ Read-only: whether or not the attribute can be modified after creation

▪ Searchable: whether or not the attribute can be filtered against when performing a

search

▪ Sortable: whether or not the attribute can be used to sort a search result

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 51

In the context of this Approval trait definition, the different attribute definitions represent an

approval step, and the below table describes each attribute definition and the property values

to assign:

Attribute description
Display
name

Name Data type Default
value

Size Boolean
properties

Whether or not the approval is
required

Is required is_required boolean searchable,
sortable

Whether or not the approval
has been granted

Has been
granted

has_been_granted boolean searchable,
sortable

The email address of the
approver

Approver approver string 128 searchable,
sortable

The role of the approver Approver
role

approver_role string 64 searchable,
sortable

The exact date and time at
which the approval request
has been approved or at which
it has been rejected

Approval
date

approval_date date searchable,
sortable

Note that to add an attribute definition to a trait definition, you need to use the on the top

right of the Attributes list.

REMARK:
Note that for the current trait definition creation exercise we are using the VS Code Command
Palette and the corresponding (OpenText: New Trait) model creation command. This is the second
way to create models. There is one more way that remains, and this will be illustrated in the next
tutorial exercise.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 52

You can now save and close the Approval trait definition model. Saving will pop up a Save As

file saving dialog box. Make sure to select the otresources folder as target folder, leave the file

name as is (approval.cmstrait) and click Save.

The model explorer tree in the MODELS section should now show your new approval

(contract_approval) trait definition under /Traits. The contract_approval value between

brackets represents the namespace to which the trait definition belongs, as the model explorer

shows the different models according to their unique key (which in context of a trait definition is

the combination of the namespace and name properties).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 53

3.6 [20’] Creating a file type definition
During this exercise you will create the Contract type definition model. A type definition is the main

component for building your application’s (custom) data model. A type definition has its own attributes

and required traits (i.e.: traits that are always added to the type instance upon creation). A type

definition can also be of several categories: object, file or folder. For the purpose of this tutorial, we

will be creating two file type definitions and one folder type definition. This Contract type definition is

the first file type definition, and it will be the parent type of the Loan Contract file type definition that

we will create during the next exercise. For more information on types (definitions and instances), you

can refer to the Define a namespace, trait and "FILE" document type and Create instances using

custom type with trait sections in the Content Metadata Service product documentation or the Type

resource documentation in the Content Metadata Service API reference.

Once you are done with this section, you will have created the Contract type definition that

corresponds with your Contract Approval application’s (parent) contract file type, and you are ready to

start creating the (child) Loan Contract type definition.

To create the Contract type definition, proceed as follows:

• In VS Code, switch to the Explorer view.

If you expand the otresources (model) folder under your contract_approval application root

folder, you can indeed see the previously created contract_approval namespace and approval

trait.

https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/7
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/8
https://developer.opentext.com/resources/documentation/14ba85a7-4693-48d3-8c93-9214c663edd2/7cf5eb47c28976a046be6762fb97137c/page/8
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38#tag/Type

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 54

• To create a new type definition, right-click the otresources (model) folder and select OpenText:

New Model.

From the menu that drops down from the top of VS Code, select New Type.

In the input box that now appears at the top of VS Code, type the new type model name for your

type definition, contract, and press Enter to confirm.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 55

As you can see from the red color of both the file explorer tree and the type definition model’s tab,

and from the error message displayed right under the Category field, there seems to be a

problem.

Let’s have a look at the PROBLEMS tab as this will list and describe the problem/error as well.

Select Problems from the View menu.

The error message that displays in both the (type) model editor and the PROBLEMS tab is

“Category must be equal to one of the allowed values (object, file, folder)”, and this is indeed

correct. You created a new model file under the otresources folder for which all mandatory

properties have not yet been properly filled.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 56

Let’s now fill the different type definition model properties and after saving the model, the error

should disappear.

Fill the type definition properties as follows:

o Namespace: the namespace to which this type definition belongs; select the

contract_approval namespace

o Display name: the display name is the user-friendly name for the type definition; this does

not have to be unique, and it has been automatically populated for your convenience based

on the previously chosen type model file name; you should best leave the value to be

Contract as it nicely aligns with the model file name and model name

o Name: the name is the technical name for the type definition; this has to be unique in context

of the selected namespace (and the combination of namespace and type definition name

needs to be unique within your developer tenant), and it has been automatically populated for

your convenience based on the previously chosen type definition file name; you should best

leave the value to be contract as it nicely aligns with the model file name and model display

name

o Category: the type category to which the type definition belongs; this can be object, file or

folder; the Contract type definition is of the file category

o Parent: the parent type definition for the type definition you are creating; the Contract type

has no parent

o Description: Contract Type

o Attributes: the attributes list defines the different attribute definitions of the type definition; for

a description of the attribute definition properties, please refer to the previous exercise

The below table describes each attribute definition and the property values to assign:

Attribute description
Display name Name Data

type
Default
value

Size Boolean
properties

The email address of the person
requesting the approval of the
contract

Requester
email

requester_email string 256 required,
searchable,
sortable

The current (approval) status of
the contract

Status status string 32 searchable,
sortable

The (monetary) value of the
contract

Value value integer required,
searchable,
sortable

The risk classification of the
contract in context of the
personal data it contains

Risk
classification

risk_classification integer searchable,
sortable

The personal data related terms
that were found in the contract

Extracted
terms

extracted_terms string 256 repeating

o Required traits: the required traits list defines the different mandatory traits for the type

definition; each required trait definition has the following properties:

▪ Instance name: the instance name is the name of the required trait; this must be unique

across the type definition’s required traits; in context of this tutorial where the required

traits are all Approval traits, the instance name will represent the type of approval

▪ Trait name: the trait name is the unique key representing the selected trait definition (i.e.:

combination of name and namespace); in the context of this tutorial, all required traits will

be approval (contract_approval) traits

The below table describes each required trait definition and the property values to assign:

Required trait description Instance name Trait name

The automatic (by the system) approval, which is always required Automatic
Approval

approval (contract_approval)

The approval by the Line Manager, which is only required when
the contract value is above 1000

Line Manager
Approval

approval (contract_approval)

The approval by the Risk Manager, which is only required when
the risk classification is above 3 (i.e.: 4: HIGH or 5: VERY HIGH).

Risk Manager
Approval

approval (contract_approval)

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 57

Note that to add a required trait definition to a type definition, you need to use the on the

top right of the Required traits list.

REMARK:
Note that for the current type definition creation exercise we are using the OpenText: New Model
menu item from the contextual menu on the otresources folder in the VS Code file explorer tree.
This is the third and last way to create models we wanted to illustrate in this tutorial. In the next
exercises, feel free to choose whichever of the three methods you prefer.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 58

Save the Contract type definition model. This time, saving will NOT pop up a Save As file saving

dialog box because the file already exists in the otresources folder. Also, having filled the

mandatory properties, the “Category must be equal to one of the allowed values (object, file,

folder)” error has now disappeared from the PROBLEMS tab and the model editor.

You can now close the Contract type definition model.

REMARK:
This is a good time to mention that all models get validated to enforce constraints/rules. So, very
much like with the previous example of a type model file having a mandatory Category field, the
system enforces any constraints that have been defined for the type of model you are creating.
The validation for your model happens at two different moments:

• When you change a value of a model property. Any constraint violation resulting from
modifying a model property is immediately shown inline in your model editor. Try for example to
put some upper-case letters in the Name property of your contract type model. This will result in
showing a “must not start with ‘cms’ and must consist of lowercase letters, digits or underscores”
error message directly under the Name field:

• When you save the model file. This additional validation looks at what is actually saved on disk,

and it traps all constraint violations (including broken references) in your model folder
(/otresources). The errors that reside inside your saved model files are shown in the
PROBLEMS tab of VS Code. As an additional example, feel free to save your model with the
upper-case letters in the Name property. You will now also see this error appear in the
PROBLEMS tab:

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 59

If you switch to the OpenText Cloud Developer Tools view, the model explorer tree in the

MODELS section should now show your new contract (contract_approval) type definition under

/Types. The contract_approval value between brackets represents the namespace to which the

type definition belongs, as the model explorer shows the different models according to their

unique key (which in context of a type definition is the combination of the namespace and name

properties).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 60

3.7 [10’] Creating a file type definition that is a
subtype

During this exercise you will create the Loan Contract type definition model. This will be a subtype of

the previously created Contract type definition (i.e.: it will have contract for its Parent property). To

allow inheriting (i.e.: subtyping) the Contract type definition, the Loan Contract type definition also

has to be of the file category.

Once you are done with this section, you will have created the Loan Contract type definition that

corresponds with your Contract Approval application’s (child) contract file type, and you are ready to

start creating the Customer type definition.

To create the Loan Contract type definition, proceed as follows:

• In VS Code, using one of the three previously explained ways of creating a model, create a new

type definition and name it loan_contract when asked to enter the model (file) name.

Fill the type definition properties as follows:

o Namespace: contract_approval

o Display name: Loan Contract

o Name: loan_contract

o Category: file

o Parent: the parent type definition for the type definition you are creating; choose contract

(contract_approval) as parent for the Loan Contract type

REMARK:
Note that the contract (contract_approval) parent type is only available to be selected from
the Parent drop-down list when the file Category is selected. If you empty the Category value
or select folder, you will not be able to select contract (contract_approval) as it is indeed a
file type definition.

o Description: Loan Contract Type

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 61

o Attributes: each attribute definition and the property values to assign is described in the table

below

Attribute description
Display
name

Name Data
type

Default
value

Boolean
properties

The total count of monthly payments
required/chosen to reimburse the loan
contract value

Monthly
installments

monthly_installments integer 12 required

The yearly income, which will be used
together with the monthly payments and
the loan contract value to determine
solvency of the customer

Yearly
income

yearly_income integer required

o Required traits: each required trait definition and the property values to assign is described

in the table below

Required trait description Instance name Trait name

The automated approval step that checks whether or not the
customer is solvent by checking that the monthly cost doesn’t
exceed 25% of the monthly income (calculated from the loan
contract cost, the total count of monthly payments and the
yearly income)

Solvency Check approval (contract_approval)

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 62

REMARK:
Although we only assigned two attributes and one required trait to the Loan Contract type
definition, being a subtype of the Contract type definition implies that all the attributes and required
traits of that type definition are also present on the Loan Contract type definition.

You can now save and close the Loan Contract type definition model.

If you switch to the OpenText Cloud Developer Tools view, the model explorer tree in the

MODELS section should now show your new loan_contract (contract_approval) type definition

under /Types.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 63

3.8 [05’] Creating a folder type definition
During this exercise you will create the Customer type definition model. This will be a type definition

of the folder category as it represents a customer, and it will contain (as a folder) the different

contracts of file type Contract or Loan Contract related to that customer.

Once you are done with this section, you will have created the Customer type definition that

corresponds with your Contract Approval application’s customer folder, and you are ready to start

creating the Contract Approval workflow model.

To create the Customer type definition, proceed as follows:

• In VS Code, using one of the three previously explained ways of creating a model, create a new

type definition and name it customer when asked to enter the model (file) name.

Fill the type definition properties as follows:

o Namespace: contract_approval

o Display name: Customer

o Name: customer

o Category: folder

o Parent: the Customer type has no parent

o Description: Customer Type

o Attributes: each attribute definition and the property values to assign is described in the table

below

Attribute description
Display
name

Name Data
type

Default
value

Size Boolean
properties

The email address of the customer Customer
email

customer_email string 256 required,
searchable,
sortable

o Required traits: the Customer type has no required traits

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 64

You can now save and close the Customer type definition model.

If you switch to the OpenText Cloud Developer Tools view, the model explorer tree in the

MODELS section should now show your new customer (contract_approval) type definition

under /Types.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 65

3.9 [120’] Creating a workflow model
During this exercise you will create the Contract Approval workflow model. A workflow model

represents an executable process model from which process instances will be created. The

executable process model is stored as BPMN 2.0 encoded JSON. This Contract Approval workflow

model will automate the contract approval process of your Contract Approval application. It consists of

a number of automated and manual approval tasks. Not all approval tasks are required. They are

conditional, based on the type, value, and risk of the contract. Throughout this exercise we will go into

detail on how to configure the different events, activities, and conditional gateways (choices) of the

Contract Approval workflow model. For more information on Workflow Service process models and

process instances, you can refer to the Workflow Service product documentation , the Workflow

Modeler product documentation or the Workflow Service API reference.

Once you are done with this section, you will have created the Contract Approval workflow model

that corresponds with your Contract Approval application’s approval process, and as this is the last

model for your application, you are ready to deploy your Contract Approval application project (i.e.:

its models) to the different IM services.

REMARK:
We certainly recommend you go through this entire exercise and build the workflow yourself.
However, inherent to the complexity of the workflow model you are going to build is that there could
be issues that require troubleshooting, and which you might have trouble fixing. To help with that,
whether it is to compare your workflow model with a working version or just to use an existing
working version instead of the one you built, you can download the finished Contract Approval
application here. You will find the contract_approval.wf workflow under the otresources folder.

To create the Contract Approval workflow model, proceed as follows:

• In VS Code, using one of the three previously explained ways of creating a model, create a new

workflow and name it contract_approval when asked to enter the (file) name. If you are using

New File to create the new workflow, note that you should assign the “.wf” extension for the

system to open the workflow model editor.

https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/8c2eb4491d04c0b6eb65e4084979a0f8/page/1
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1
https://developer.opentext.com/apis/523afd8e-0180-4500-91fa-713df27b8f19/c1519bcf-64ae-4a72-a472-2d7da5f5ea61/cff45d1c-f9fc-47dd-9929-22f91e2c76d5
https://us.v-cdn.net/6030023/uploads/I4OENUZKH8VJ/contract-approval-sample-app.zip

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 66

• Compared to the previously used metadata model editors, the workflow model editor is much

more elaborate. It is intended to build entire business process definitions with all the complexity

this brings. Throughout this exercise we will step by step build the Contract Approval workflow,

and this will indeed illustrate this much higher degree of complexity.

However, before getting started with building the actual workflow, we should first have a look at

the model editor itself to understand its different features.

Let’s first expand the two collapsed side panes. On the top left of the editor, click the button to

expand the palette (i.e.: the left pane).

Now, click the button on the middle right of the editor to expand the attribute bar (i.e.: the

right pane).

Note that the button on the top right allows to expand or collapse both side panes at once.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 67

As you can now see, the workflow editor has four areas:

o The menu bar on top

o The palette on the left side

o The canvas in the middle

o The attribute bar on the right side

The menu bar contains the generic capabilities/buttons (e.g.: copy/paste, delete, align, zoom,

help, etc.).

The palette contains the different workflow elements, which you can drag and drop on the canvas

to build your workflow model.

The canvas is the area where you will be building/drawing your workflow model.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 68

The attribute bar displays the attributes of the currently selected element. At the moment, no

element is selected (which is the same as clicking on an empty area on the canvas), so the

workflow model’s attributes are displayed.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 69

• Now that you have an understanding of the different areas of the workflow model editor, let’s start

building our workflow model.

REMARK:
Although we will cover many features of the workflow model editor in this tutorial, providing you with
a good and practical understanding of how to build business process definitions, we will not cover
every single feature and capability. This means we will only use a subset of the buttons on the
menu bar and the workflow elements in the palette. We will also not describe all attributes in the
attribute bar.
Once you understand how to build workflow models, the Workflow Modeler product documentation
(also available from the button on the menu bar) provides you a more exhaustive and in depth
explanation of the functionality and usage of the workflow model editor (or workflow modeler).

The first thing we will look at is filling the workflow model’s own attributes, visible from the

attribute bar when you have no element selected (i.e.: you click an empty area on the canvas to

ensure the entire workflow model is selected). As per the above remark, we will only explain

those attributes we consider relevant in context of this tutorial. Feel free to open the Processes

section of the Workflow Modeler product documentation for more details on the different process

model attributes.

Fill the workflow model attributes as follows:

o Process identifier: the process identifier is the technical name for the workflow model; this

has to be unique (within your developer tenant), and it has been automatically populated for

your convenience based on the previously chosen workflow name (the model file name); you

should best leave the value to be contract_approval as it nicely aligns with the model file

name and model name

o Name: the name is the user-friendly name for the workflow model; this does not have to be

unique, and it has been automatically populated for your convenience based on the

previously chosen workflow name (the model file name); you should best leave the value to

be Contract Approval as it nicely aligns with the model file name and model process

identifier

o Target namespace: The target namespace allows grouping the different workflow models

together; you can fill contract_approval as value

o All other workflow model attributes can remain unchanged

https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1
https://developer.opentext.com/resources/documentation/523afd8e-0180-4500-91fa-713df27b8f19/422e95bab170ee9062c70e5f56085522/page/1

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 70

Since building a workflow model contains many steps, it is recommended that you regularly save

your workflow model to avoid losing work. You can now save the workflow model.

• Now that the workflow model attributes have been set, we can start building the actual business

process definition by drawing it on the canvas.

The first element to set is the start event. As this element is already on the canvas, we just need

to set the attributes.

Select the start event element (on the canvas) and set the attributes as follows:

o Name: Start

o All other element attributes can remain unchanged

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 71

• The next element we are going to add is an http task (i.e.: REST API call). This task will perform a

GET request to fetch the JSON object that holds the metadata of the contract to approve. This

contract JSON object can then be used throughout the subsequent steps of the business

process.

To add the new http task, expand the Activities section from the palette and drag and drop an

Http task to the right of the Start event.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 72

Select the http task element and set the element attributes as follows:

o Name: Get contract from CMS

o Authentication details: Use current authentication token

o Request method: GET

o Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

=> The ‘base_url’ parameter is referring to the base URL of the IM services for your trial

account

=> The ‘contract_id’ parameter is referring to the unique identifier of the contract to approve

(so that you can use it to fetch contract information)

Both the ‘base-url’ and ‘contract_id’ are being passed to the workflow when initializing it from

your application’s code (this will be explained/shown later, under exercise Building the

application).

REMARK:
In the request URL you can see we are using ${} to pass parameters. This is the standard
mechanism to pass process variables as (string) parameters to expressions.

o Response variable name: contract

o Save response as JSON: true

o Exclusive: true

o Execution listeners:

▪ Event: end

▪ Execute an expression: ${execution.setVariable("contractDownloadLink" ,

contract._links['urn:eim:linkrel:download-media'].href)}

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 73

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 74

o All other element attributes can remain unchanged

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 75

Drag a sequence flow (arrow) connector from the Start event element to the Get contract from

CMS http task element.

There is no need to set any attributes for the sequence flow connector you just added.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 76

• Let’s now add three exclusive (or choice) gateways to, based upon certain conditions, route the

business process execution in one of two directions. The three exclusive gateways we are going

to add are going to have the following behavior:

o Take a different route based on whether the contract is a Standard contract (of type

contract) or a Loan Contract (of type loan_contract)

o Take a different route based on whether the value (attribute) of the contract is below or

equal to 1000 or above 1000

o Take a different route based on whether the risk_classification (attribute) is MEDIUM (3) or

lower or HIGH (4) or higher

To create the three exclusive gateways, drag the Exclusive gateway element from the previous

element (i.e.: for the first exclusive gateway, this is the Get contract from CMS http task and for

the two subsequent exclusive gateways, it is the Exclusive gateway element you created

before).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 77

For all three exclusive gateway elements you just created, set the Exclusive attribute to true:

• The next step is to add all activities that correspond with the different choices of the exclusive

gateways. More specifically, for the first and the second exclusive gateway, we already have one

sequence flow connector representing the (first) choice that moves the business process to the

next exclusive gateway. Let’s now add the second choice for the first and second exclusive

gateways, and both choices for the last gateway. To explain what those choices are, let’s revisit

the logic of the exclusive gateways and add the activity/behavior for each choice:

o First exclusive gateway:

▪ In case the contract is a Standard contract (of type contract), the process can advance

to the second gateway

▪ In case the contract is a Loan Contract (of type loan_contract), the solvency (i.e.: the

ability to pay back the loan) of the customer needs to be checked, and the process has to

advance to a new Http task that updates (i.e.: PATCH request) the status of the contract

to SOLVENCY CHECK

o Second exclusive gateway:

▪ In case the value (attribute) of the contract is below or equal to 1000, the process can

advance to the third gateway

▪ In case the value (attribute) of the contract is above 1000, the contract needs to be

(manually) approved by a line manager, and the process has to advance to a new Http

task that updates (i.e.: PATCH request) the status of the contract to LINE MANAGER

APPROVAL

o Third exclusive gateway:

▪ In case the risk_classification (attribute) is MEDIUM (3) or lower, the process can

advance to the (always required) automatic approval, and the process can advance to a

new Http task that updates (i.e.: PATCH request) the status of the contract to

APPROVED

▪ In case the risk_classification (attribute) is HIGH (4) or higher, the contract needs to be

(manually) approved by a risk manager, and the process has to advance to a new Http

task that updates (i.e.: PATCH request) the status of the contract to RISK MANAGER

APPROVAL

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 78

To add the four new (PATCH request) http tasks that update the status of the contract, drag and

drop the Http task elements from the palette (under the Activities section) to the canvas, and

connect the three exclusive gateways with these new http tasks using sequence flow (arrow)

connectors.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 79

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 80

Now that you have created the four different http tasks that update the status of the contract, you

can set their respective attributes. From left to right (on the previous picture), please fill the http

task attributes as follows:

o Http task to set contract status to SOLVENCY CHECK:

▪ Name: Set contract status to SOLVENCY CHECK

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "properties": {

 "status": "SOLVENCY CHECK"

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 81

o Http task to set contract status to LINE MANAGER APPROVAL:

▪ Name: Set contract status to LINE MANAGER APPROVAL

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "properties": {

 "status": "LINE MANAGER APPROVAL"

 },

 "traits": {

 "ca_approval": {

 "Line Manager Approval": {

 "is_required": true,

 "has_been_granted": false,

 "approver": "${contract.updated_by.email}",

 "approver_role": "Line Manager"

 }

 }

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 82

o Http task to set contract status to RISK MANAGER APPROVAL:

▪ Name: Set contract status to RISK MANAGER APPROVAL

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "properties": {

 "status": "RISK MANAGER APPROVAL"

 },

 "traits": {

 "ca_approval": {

 "Risk Manager Approval": {

 "is_required": true,

 "has_been_granted": false,

 "approver": "${contract.updated_by.email}",

 "approver_role": "Risk Manager"

 }

 }

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 83

o Http task to set contract status to APPROVED:

▪ Name: Set contract status to APPROVED

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "properties": {

 "status": "APPROVED"

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 84

The last step to completing the exclusive gateway (choices) logic is to configure the different

sequence flows (i.e.: set the attributes of the arrow connectors). Per exclusive gateway, for the

outgoing sequence flow arrow connectors, set the attributes as follows:

o First exclusive gateway:

▪ Sequence flow going to the “Set contract status to SOLVENCY CHECK” http task:

▪ Name: Loan contract

▪ Flow condition: ${contract.type == "ca_loan_contract"}

▪ Default flow: <not checked>

▪ Sequence flow going to the second exclusive gateway:

▪ Name: Standard contract

▪ Default flow: <checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 85

o Second exclusive gateway:

▪ Sequence flow going to the “Set contract status to LINE MANAGER APPROVAL” http

task:

▪ Name: Contract value > 1000

▪ Flow condition: ${contract.properties.value > 1000}

▪ Default flow: <not checked>

▪ Sequence flow going to the third exclusive gateway:

▪ Name: Contract value <= 1000

▪ Default flow: <checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 86

o Third exclusive gateway:

▪ Sequence flow going to the “Set contract status to RISK MANAGER APPROVAL” http

task:

▪ Name: Contract risk > 3

▪ Flow condition: ${contract.properties.risk_classification > 3}

▪ Default flow: <not checked>

▪ Sequence flow going to the “Set contract status to APPROVED” http task:

▪ Name: Contract risk <= 3

▪ Default flow: <checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 87

You might have noticed that the “Standard contract” sequence flow arrow connector now has a

bend point (angle). This can be useful for clarity/layout purposes. To add bend points to the arrow

connectors, you should use the button from the button bar.

If you did not recently, this is a good time to save your workflow model again.

REMARK:
As is the case with all models, if your workflow model contains validation errors these will be
shown under the PROBLEMS tab from VS Code. Note that, unlike with the other models, a
workflow model doesn’t show inline errors right away. That would be too distracting (annoying
even) for the user building the workflow. To see any validation issue while you are building the
workflow, you indeed need to save the model to trigger the validation.

• Now that we have created all activities that set the status of the contract to indicate that the

different approval activities are in progress, we can add the actual approval steps themself.

Except for the automatic approval that just sets the contract to be approved, there are indeed

three approval steps requiring an approval activity:

o Calculate solvency:

This is an automated check that calculates whether or not the person requesting the approval

of the loan contract has enough monthly cash flow to pay back the loan. The logic it follows is

that it compares the monthly available cash (based on dividing the yearly income by 12) with

the monthly payments (based on the total monthly installments count and the value of the

contract). If the monthly payment/cost exceeds 25% of the monthly available cash, the

customer is considered not to be solvent (enough) and the loan contract approval will be

automatically rejected.

o Line Manager Approval:

This is a manual approval task by a Line Manager. The Line Manager can choose to approve

or reject the contract.

o Risk Manager Approval:

This is a manual approval task by a Risk Manager. The Risk Manager can choose to approve

or reject the contract.

Let’s start with the “Calculate solvency” approval task. From the palette (under the Activities

section), drag and drop a Script task onto the canvas above the “Set contract status to

SOLVENCY CHECK” http task.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 88

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 89

Select the script task element you just added and set the element attributes:

o Name: Calculate solvency

o Script format: JavaScript

o Script:

var contractDetails = JSON.parse(execution.getVariable("contract"));

var monthlyPayments = contractDetails.properties.value /

contractDetails.properties.monthly_installments;

var monthlyBudget = contractDetails.properties.yearly_income / 12 / 4;

execution.setVariable("solvent", monthlyBudget >= monthlyPayments);

Let’s now add both the “Line Manager Approval” and “Risk Manager Approval” manual approval

tasks. From the palette (under the Activities section), drag and drop a User task onto the canvas

twice. One above the “Set contract status to LINE MANAGER APPROVAL” http task, and one to

the right of the “Set contract status to RISK MANAGER APPROVAL” http task.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 90

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 91

From left to right, set the element attributes for both manual approval tasks:

o User task for the Line Manager Approval step:

▪ Name: Line Manager Approval

▪ Delivery options

Assignments tab:

▪ Task type: Approval

▪ Assign to process initiator: <checked>

Outcomes tab:

▪ Modify the customized value for both possible outcomes:

1 Possible outcomes: Approve

Customized value: approved

2 Possible outcomes: Reject

Customized value: rejected

▪ Task outcome response variable name: approvalStatus

Once you have filled the Outcomes tab, you can click Save to save the delivery options

and continue filling the manual task properties.

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 92

o User task for the Risk Manager Approval step:

▪ Name: Risk Manager Approval

▪ Delivery options:

Assignments tab:

▪ Task type: Approval

▪ Assign to process initiator: <checked>

Outcomes tab:

▪ Modify the customized value for both possible outcomes:

1 Possible outcomes: Approve

Customized value: approved

2 Possible outcomes: Reject

Customized value: rejected

▪ Task outcome response variable name: approvalStatus

Once you have filled the Outcomes tab, you can click Save to save the delivery options

and continue filling the manual task properties.

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 93

To finish creating the three approval tasks (Calculate solvency, Line Manager Approval, and Risk

Manager Approval), you can now connect them from their respective preceding tasks by adding

the three corresponding sequence flow arrow connectors:

There is no need to set any attributes for the sequence flow connectors you just added.

Please save your workflow model to make sure not to lose your work.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 94

• Now that we have added all approval steps, we can add the http tasks that update the contract

with the results of the approval. More specifically, each approval step has its own corresponding

(required) trait on the contract instance that is being approved, and we will create an “Update

trait” http task for each approval activity.

Note that we have already done this before. You might have previously noticed that for the

manual approval steps, the corresponding traits have been already partially updated (during the

“Set contract status to …” http tasks) to signal that a manual approval is required.

Let’s now add all four “Update trait” (PATCH request) http tasks. Drag and drop four Http task

elements onto the canvas. One above the “Calculate solvency” script task, one to the right of the

“Line Manager Approval” user task, one to the right of the “Risk Manager Approval” user task, and

one to the right of the “Set contract status to APPROVED” http task.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 95

Set the attributes of the four new “Update trait” (PATCH request) http tasks as follows:

o Http task to update the Solvency Check trait:

▪ Name: Update Solvency Check trait

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "traits": {

 "ca_approval": {

 "Solvency Check": {

 "is_required": true,

 "has_been_granted": ${solvent},

 "approver": "SYSTEM",

 "approver_role": "Solvency Check",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 96

o Http task to update the Line Manager Approval trait:

▪ Name: Update Line Manager Approval trait

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "traits": {

 "ca_approval": {

 "Line Manager Approval": {

 "is_required": true,

 "has_been_granted": ${approvalStatus == "approved"},

 "approver": "${contract.updated_by.email}",

 "approver_role": "Line Manager",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 97

o Http task to update the Risk Manager Approval trait:

▪ Name: Update Risk Manager Approval trait

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "traits": {

 "ca_approval": {

 "Risk Manager Approval": {

 "is_required": true,

 "has_been_granted": ${approvalStatus == "approved"},

 "approver": "${contract.updated_by.email}",

 "approver_role": "Risk Manager",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 98

o Http task to update the Automatic Approval trait:

▪ Name: Update Automatic Approval trait

▪ Authentication details: Use current authentication token

▪ Request method: PATCH

▪ Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

▪ Request headers: Content-Type: application/json

▪ Request body:

{

 "traits": {

 "ca_approval": {

 "Automatic Approval": {

 "has_been_granted": true,

 "approver": "SYSTEM",

 "approver_role": "Automatic Approval",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

▪ Response variable name: contract

▪ Save response as JSON: true

▪ Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 99

You can now add the four sequence flow arrow connectors that link the previous tasks to the

“Update trait” http tasks:

There is no need to set any attributes for the sequence flow connectors you just added.

Please save your workflow model to make sure not to lose your work.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 100

• The result of the three approval tasks that have the option to approve or reject the contract

(Solvency check, Line Manager Approval, and Risk Manager Approval) is now known. So, it is

now possible, depending on whether the approval step resulted in approval being granted or not,

to advance to the next step in the approval process when approved, or terminate to the process

via the rejection flow when rejected.

To implement this logic of choosing the correct process route, based on the results of the

approval steps, we will add (you might have guessed it already) three new Exclusive gateway

elements. In the same way as with the previously created exclusive gateways, you can also

already add the sequence flow arrow connectors coming from the previous (approval) task

elements.

There’s no need to set any attributes for the sequence flow arrow connectors.

For all three new exclusive gateway elements, set the Exclusive attribute to true:

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 101

• Before we can connect the exclusive gateways to the two possible next process steps (depending

on being approved or rejected), we need to create the activity that represents what needs to

happen when the approval task resulted in a rejection, as this missing activity is one of the two

outcomes/options. More specifically, we need to create the http task that sets the contract’s status

to REJECTED.

Proceed by dragging and dropping a new Http task element onto the canvas right above the

exclusive gateway element that is most to the right, out of the three new exclusive gateway

elements.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 102

Very much like with the other “Set contract status to …” tasks, set the attributes of this new “Set

contract status to REJECTED” http task as follows:

o Name: Set contract status to REJECTED

o Authentication details: Use current authentication token

o Request method: PATCH

o Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

o Request headers: Content-Type: application/json

o Request body:

{

 "properties": {

 "status": "REJECTED"

 }

}

o Response variable name: contract

o Save response as JSON: true

o Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 103

• We can now connect the three approved/rejected exclusive gateways to their two possible next

process steps. For each of the three new exclusive gateway elements, use two sequence flow

arrow connectors to connect them with their respective subsequent process step elements.

Remember that to add bend points (angles) to the arrow connectors, you should use the button

from the button bar.

Once done, you should have created 6 new sequence flow arrow connectors, as shown in the

next screen shot.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 104

What’s left for the three approved/rejected exclusive gateways is to set the attributes of the

different outgoing sequence flows. From left to right, set the sequence flow attributes as follows:

o First exclusive gateway:

▪ Sequence flow going to the “Set contract status to REJECTED” http task:

▪ Name: Not solvent

▪ Flow condition: ${!solvent}

▪ Default flow: <not checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 105

▪ Sequence flow going to the contract value checking exclusive gateway:

▪ Name: Solvent

▪ Default flow: <checked>

o Second exclusive gateway:

▪ Sequence flow going to the “Set contract status to REJECTED” http task:

▪ Name: Rejected

▪ Flow condition: ${approvalStatus == "rejected"}

▪ Default flow: <not checked>

▪ Sequence flow going to the contract risk checking exclusive gateway:

▪ Name: Approved

▪ Default flow: <checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 106

o Third exclusive gateway:

▪ Sequence flow going to the “Set contract status to REJECTED” http task:

▪ Name: Rejected

▪ Flow condition: ${approvalStatus == "rejected"}

▪ Default flow: <not checked>

▪ Sequence flow going to the “Set contract status to APPROVED” http task:

▪ Name: Approved

▪ Default flow: <checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 107

This is again a good time to save your work.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 108

• We have now built the main flow of the contract approval business process. The only thing left,

before adding an end event to the workflow model, is to add an email task that sends an email to

the person having requested the approval of the contract (i.e.: the customer) to inform them about

the approval status (APPROVED or REJECTED) of the contract.

To do this, drag and drop a Mail task from the palette (under the Activities section) onto the

canvas to the right of the “Update Automatic Approval trait” http task. You can also immediately

add the sequence flow arrow connector, as there are no specific sequence flow attributes to set.

Fill the mail task attributes as follows:

o Name: Send Email on contract status

o To: ${contract.properties.requester_email}

o From: noreply@mycompany.com

o Subject: Contract Approval Status

o Text:

Contract: ${contract.name}

Status: ${contract.properties.status}

o Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 109

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 110

To ensure the REJECTED contract approval status email gets sent as well, connect the “Set

contract status to REJECTED” http task to the new “Send Email on contract status” task.

• You can now add the end event as termination event of your business process. Do this by simply

selecting the “Send Email on contract status” email task and drag and dropping the end event

(middle top icon) to the right of the email task.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 111

Set the attributes for the end event as follows:

o Name: End

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 112

Again, please save the workflow model to ensure you don’t lose any work.

• You have now implemented the main logic of the contract approval business process. Let’s add

one more activity to address a special case. More specifically, we want the manual approval tasks

(by Line Manager and Risk Manager) to expire if a certain wait period has been exceeded, so that

approval tasks don’t get stuck forever in the approver’s inbox. For that, we will add one more http

task that marks the contract as EXPIRED (as special exception status).

So, please drag and drop a new Http task element onto the canvas above the “Send Email on

contract status” email task at the top end of the canvas (so that it is higher than the “Set contract

status to REJECTED” http task).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 113

Fill the http task attributes as follows:

o Name: Set contract status to EXPIRED

o Authentication details: Use current authentication token

o Request method: PATCH

o Request URL: ${base_url}/cms/instances/file/ca_contract/${contract_id}

o Request headers: Content-Type: application/json

o Request body:

{

 "properties": {

 "status": "EXPIRED"

 }

}

o Response variable name: contract

o Save response as JSON: true

o Exclusive: true

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 114

Before you can connect the sequence flow connector arrows from the two manual approval tasks

to the “Set contract status to EXPIRED” http task, there is one more thing you need to consider.

This is not a normal sequence flow, as it only gets triggered when the manual approval task times

out. More specifically, you need to add a boundary timer event to both approval tasks.

To add the “Wait for timeout” timer event to the “Line Manager Approval” and “Risk Manager

Approval” user tasks, drag and drop (from the Boundary Events section on the palette) a

Boundary timer event on top of both the Line Manager Approval and Risk Manager Approval

http tasks (which will show green to indicate when the boundary event can be released/dropped

to be linked to them). Both start timer events should be aligned to the top of the http tasks, so that

they sit half inside and half outside of the http task element.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 115

Set the attributes for both start timer events as follows:

o Name: Wait

o Time duration (e.g. PT5M): PT5M

o Cancel activity: <checked>

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 116

You can now connect both “Wait” start timer events to the “Set contract status to EXPIRED” http

task with sequence flow arrow connectors.

Set the attributes for the two new sequence flow arrow connectors to the following:

o For the sequence flow originating from the “Line Manager Approval” http task:

▪ Name: Wait timeout exceeded

▪ Flow condition: ${contract.properties.status == "LINE MANAGER APPROVAL"}

o For the sequence flow originating from the “Risk Manager Approval” http task:

▪ Name: Wait timeout exceeded

▪ Flow condition: ${contract.properties.status == "RISK MANAGER APPROVAL"}

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 117

There’s one last sequence flow arrow connector to add. To ensure the EXPIRED contract

approval status email gets sent as well, connect the “Set contract status to EXPIRED” http task to

the “Send Email on contract status” task.

Please save the workflow and verify that there are no errors in the PROBLEMS tab.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 118

WARNING:
You might get the following warning message in the PROBLEMS tab (and corresponding
highlighted boundary timer event in the workflow designer canvas):

This is most likely caused by an error in the Contract Approval workflow model, where the
Boundary timer event is not properly connected to the related User task (i.e.: the Line
Manager Approval and/or Risk Manager Approval task). To solve this, open the workflow
model and move the Boundary timer event on top of the User task and make certain the User
task highlights green before you release it. You can even wiggle the Boundary timer event
around a little after you dropped it to make sure the User task indeed lights up as green again
(it has to still show a green border, if it doesn’t show green the Boundary timer event is not
properly connected). Save the changes to the workflow and confirm the PROBLEMS tab does
no longer contain the error.

You don’t have to do this last step, but as the proverbial cherry on the workflow model cake, we’d

like to add some additional information to the workflow that describes the workflow input and,

specifically in case of this contract approval workflow model, the different contract states.

Drag and drop two Text annotation elements from the Artifacts section of the palette onto the

bottom left of the canvas.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 119

From left to right, double-click and fill the text annotations with the following text (i.e.: information

for the developer looking at the workflow model):

o First text annotation:

Input:

contract_id

Contract has status CREATED

o Second text annotation:

CONTRACT STATES:

CREATED

SOLVENCY CHECK

LINE MANAGER APPROVAL

RISK MANAGER APPROVAL

REJECTED

APPROVED

EXPIRED

If the text doesn’t fit, you can drag the text annotation element’s bottom right or top left corner to

expand it.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 120

Your Contract Approval workflow model is now complete. Please, save it one last time, and

close the workflow editor.

If you switch to the OpenText Cloud Developer Tools view, the model explorer tree in the

MODELS section should now show your new contract_approval (contract_approval) workflow

model under /Workflows.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 121

3.10 [10’] Deploying the application to the IM
services

During this exercise you will deploy your Contract Approval application project (i.e.: its models) to

the different IM services. Thanks to the organization connection you previously created, this is as

simple as selecting the “Deploy Project” contextual menu from your project root folder.

Once you are done with this section, you will have deployed the Contract Approval application into

your developer organization’s single tenant, and you are ready to verify the deployment of the

different models, using the IM APIs via Postman.

To deploy the Contract Approval application project, proceed as follows:

• In the Explorer view of VS Code, right-click inside your contract_approval project root folder (in

the empty area to avoid selecting a sub folder or file) and click the OpenText: Deploy Project

menu item to deploy your project.

REMARK:
Since you have tested your connection at the beginning of this tutorial, it can be that the
connection (i.e.: authentication token) has expired. In that case you will see the system will
automatically reconnect first (which launches a web browser window) when clicking OpenText:
Deploy Project.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 122

After successfully deploying, the system pops up a “Deploy Project returned success” message,

and the Output view automatically opens to display the OT Deployment output. It contains the

tenant ID and (application) API key data.

• You need to store the OT Deployment information, as you will need it when verifying that your

application models are correctly deployed. You will also need this when developing the actual

application (i.e.: the Contract Approval application code).

Copy the text from the Output view window into a contract_approval_app_config.txt text file

and save it (e.g.: under a new app_config folder).

IMPORTANT:
Although we are using unencrypted/insecure text files to store the different key and password
information for the purpose of this tutorial, it is of course recommended for real life scenarios to
store any API key or password information in a secure way.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 123

REMARK:
If you somehow missed the opportunity to copy/save the OT Deployment information (Tenant ID
and client credentials), you can always retrieve the Tenant ID from your developer organization’s
console (see here how to access the console). The Tenant ID can be copied from the Tenant Info
screen, and the client credentials can be regenerated from the App Details:

• To validate that deploying your application has successfully added an application entry in your

developer organization, use your web browser to navigate to developer.opentext.com and log in

with your developer (trial) account user.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 124

Open the Console for your developer organization.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 125

Confirm you can find your application deployed under your organization’s single tenant Tenant 1

and have a look at the App details.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 126

This confirms your application has been deployed and is now available in your Tenant 1

developer tenant.

Adding the redirect URL for your application authentication flow
To authenticate, users of your Contract Approval application will need to sign in using an external (to

the application) login screen as part of the authentication (OAuth) flow. This means the web browser

in which you open the Contract Approval application will first be redirected to a login screen, and once

authenticated, it will be redirected back to your Contract Approval application (which we will configure

to run on https://localhost:4000). This redirect URL needs to be added to the deployed application’s

Public Client configuration (represented by the public Client ID) for the authentication to work.

Proceed as follows:

• From the (currently open) Contract Approval application details page, click the Service clients

Manage button.

Select the Public tab.

https://localhost:4000/

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 127

Select Add an URL (under the URLs section), fill https://localhost:4000.and click Add.

Choose Save to confirm your changes.

You can click Close to return to the App details screen.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 128

Resetting the Tenant password
• This is also the right time to (re)set your Tenant 1 password. You need to do this, as you have

never actually set this password. Although the developer tenant has been generated alongside

your developer organization, for security reasons, you need to set a password specifically at the

tenant level as well.

Click the to go back to your organization view, make sure to select the tenant view, and click

 next to Tenant service account from the My Tenant info pane to request a password reset.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 129

Fill the email address corresponding with the (tenant service account) Username and click

Reset.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 130

Go to your email client and open the Password Reset email you just received from OpenText

Cloud and choose your new password.

• Once you have chosen your new password, please save it for later use. You can simply add this

new tenant password to the previously created contract_approval_app_config.txt text file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 131

REMARK:
The Console offers the administration view and capabilities for your OpenText Cloud Developer
experience. Throughout this chapter you have been using it for verifying the successful deployment of
the Contract Approval application and resetting your tenant password. Note that a new and improved
version of the console exists and is currently available for preview (i.e.: you can try it out). To access this
preview version of the new Console, click the Preview the new experience link from the organization
information screen (under New console coming soon).

The new console provides a more hierarchical view and a more logical way of navigating the different
administration artifacts and capabilities. We recommend you try it out.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 132

3.11 [25’] Working with the IM APIs
During this exercise you will use the CMS and Workflow Service IM APIs (via Postman) to verify that

your application models have been correctly deployed. For more information on the CMS and

Workflow Service APIs, you can refer to their API reference documentation, respectively CMS API

reference and Workflow Service API reference.

Once you are done with this section, you will have confirmed that your application models have

indeed been correctly deployed and you will have a good understanding of how to use the IM APIs,

so that you are ready to start building (i.e.: writing the code of) your Contract Approval application.

To verify the deployment of your application models, proceed as follows:

• Postman is a very popular API testing tool, and it is available for download from the following link:

https://www.postman.com/downloads. If you don’t already have it installed on your computer,

please download and install the version that fits your system.

• You will also need to download the finished version of the application you are building, as it

contains the Postman collection and Postman environment that you will be using to test that your

models have been correctly deployed. You can download the full Contract Approval application

(ZIP file) through this link (e.g. into a finished_project folder).

Extract (copy from within the ZIP file) the contract_approval application project folder.

https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38
https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38
https://developer.opentext.com/apis/523afd8e-0180-4500-91fa-713df27b8f19/c1519bcf-64ae-4a72-a472-2d7da5f5ea61/cff45d1c-f9fc-47dd-9929-22f91e2c76d5
https://www.postman.com/downloads
https://us.v-cdn.net/6030023/uploads/I4OENUZKH8VJ/contract-approval-sample-app.zip

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 133

Feel free to delete the ZIP file after extracting the contract_approval folder.

• After downloading and extracting the finished Contract Approval application project, we can now

configure Postman to work with the OpenText CMS & Workflow Service APIs. This is done by

importing the Postman collection and Postman environment into your Postman application.

First, open Postman (the screen shots are for a freshly downloaded and installed Windows 64-bit

version).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 134

To import the “Cloud Developer Tutorial” collection, make sure to select Collections from the left

sidebar and click Import.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 135

From the Upload Files dialog, navigate to the /docs folder in the contract_approval folder you

just extracted and choose to import the Cloud Developer Tutorial.postman_collection.json

collection file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 136

Similar to importing the “Cloud Developer Tutorial” collection, import the “Cloud Developer

Tutorial” environment by clicking Import after having selected Environments from the left

sidebar.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 137

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 138

• Before you can call the IM APIs to verify your deployment, you must fill the Cloud Developer

Tutorial environment’s environment variables with the values that correspond with your developer

organization/tenant and deployed application.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 139

Fill both the INITIAL VALUE and CURRENT VALUE columns for each of the following

environment variables (the ones that are not mentioned, you must leave as is):

o tenant_id: use the tenant id (from text in tenant ‘<tenant id>‘)you saved after deploying the

application project

o username: use the email address you used for your tenant service account

o password: use the password you saved for the tenant service account (after having reset it)

o client_id: use the Confidential Client ID you saved after deploying the application project

o client_secret: use the Confidential Client Secret you saved after deploying the application

project

Note that if you followed the tutorial exactly and used the contract_approval_app_config.txt file

to save the application configuration information (see: Deploying the application to the IM

services), all above values should be available from that file (except for the email address, which

is the standard email address you used to create your organization).

You can now save and close the Cloud Developer Tutorial environment configuration screen.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 140

• Let’s now switch to the Collections view from the left side bar and have a first look at the Cloud

Developer Tutorial Postman collection.

When you expand the Cloud Developer Tutorial collection, you can see the three folders

representing the services (CMS, Magellan Risk Guard and Workflow Service) for which the

collection has example requests.

There’s also a Get access token POST request in the root of the collection, as this is the single

request you will be using to get an access token to use for all other requests. Once you run this

request successfully the access_token environment variable gets populated and can be used in

every other request.

REMARK:
The access_token can expire. If this happens your API requests will start failing, pointing to the
token not being valid. When that happens, just re-run the Get access token request and you
should be able to continue (perform the other requests again).

• To get started, let’s now indeed get a token by running the Get access token POST request.

Make sure you have selected the Cloud Developer Tutorial environment, open the Get access

token request and click Send.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 141

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 142

• Let’s first verify that the contract_approval namespace has been correctly deployed/created in

CMS.

Expand the Content Metadata Service (CMS) folder from the Cloud Developer Tutorial

collection, followed by expanding the namespaces folder.

What you see here are the different example requests relating to namespaces. We’ll have a look

at the one that allows to retrieve the namespace we created.

Open the Get ‘Contract Approval’ namespace request and press Send.

As you can see, the Contract Approval namespace is being returned (i.e.: it has been correctly

deployed) with its display_name, name, description, and prefix attributes.

Note that the request we are using, {{base_url}}/cms/namespaces?filter=name eq

'contract_approval' is using a filter to retrieve the namespaces with a name equal to

‘contract_approval’.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 143

All the requests are based on the API reference documentation, so if you want to look at the

related documentation, just go to the CMS API reference on developer.opentext.com and select

the appropriate request explanation. This applies to all requests in the collection (note that for

Workflow Service you need to refer to the Workflow Service API reference and for Magellan Risk

Guard to the Magellan Risk Guard API reference).

In the case of this specific request, you’ll find the explanation under [GET] Get list of

Namespaces for the Namespace resource.

In theory, the request to use to get a specific namespace is the get Namespace Details GET

request, but this requires the unique ID (of UUID string format) of the namespace to be passed.

That’s why we used the filtering mechanism on the get list of Namespaces request (so that it

always works, no matter the namespace’s ID value).

https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38
https://developer.opentext.com/apis/523afd8e-0180-4500-91fa-713df27b8f19/c1519bcf-64ae-4a72-a472-2d7da5f5ea61/cff45d1c-f9fc-47dd-9929-22f91e2c76d5
https://developer.opentext.com/apis/edb3bec9-8355-4516-a530-8074f90cff0c/907bc6be-3730-11ec-8d3d-0242ac130003/3f35641c-8ba9-481a-8b05-850f09a3b7e9

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 144

REMARK:
Throughout the Postman collections you’ll find UUIDs representing unique IDs of resources as
parameters for GET, PUT, PATCH and DELETE requests. In case you want to use those
requests, you of course need to replace the UUID values with the value of the resource ID you
want to work with.

• The next deployed model to verify is the approval trait definition.

Similar to how we verified the namespace, expand the traits folder under the Content Metadata

Service (CMS) folder in the collection, and perform the Get ‘Approval’ trait definition GET

request.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 145

• To verify the deployment of the contract, loan_contract and customer type definitions,

respectively perform the following requests:

o /Content Metadata Service (CMS)/types/file/Contract/type definitions/Get ‘Contract’

type definition

o /Content Metadata Service (CMS)/types/file/Loan Contract/type definitions/Get ‘Loan

Contract’ type definition

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 146

o /Content Metadata Service (CMS)/types/folder/Customer/type definitions/Get

‘Customer’ type definition

As you will probably have noticed, for type definitions, we added some levels to the collection

folder structure to make the distinction between the file and folder type category, and the actual

type definitions. We also provided type instances related requests (on top of the type

definitions request) to allow retrieving and manipulating (including a “delete all instances”

request) the type instances that you create when testing the application.

• The last deployed model we want to verify is the contract_approval workflow model. To do this,

perform the /Workflow Service/Get ‘Contract Approval’ process model request.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 147

You have now verified the deployment of all your models, and you have seen how to use the API

reference documentation and the Cloud Developer Tutorial Postman collection in the process.

It is now time to start with the actual code writing part of the tutorial. Don’t worry, we’ll provide you

with the sample code, so that you can import it into your VS Code project. The next chapter will

take you through this sample code.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 148

3.12 [20’] Building the application
During this exercise we will be going through the code of the Contract Approval application. Although

we will import and not actually write the (JavaScript and React) code, we will go over its structure,

logic and how it calls the different IM services (CMS, Workflow Service and Magellan Risk Guard). It

is not the intent to go over every single detail of how the code was written, and which file does what,

but we will touch upon some key aspects of how the application has been developed. For more

information on the CMS, Workflow Service and Magellan Risk Guard APIs, you can refer to their API

reference documentation, respectively CMS API reference, Workflow Service API reference and

Magellan Risk Guard API reference.

Once you are done with this section, you will have understood how the code of the Contract Approval

application has been written, how it consumes the deployed models, and how it calls the different IM

APIs. In the next exercise you will be running the application and testing the functionality you

developed.

To import and go over the code of the Contract Approval application, proceed as follows:

• The first step in this exercise is indeed to import the code into your VS Code project. If you

performed the step in the previous exercise of extracting the contract_approval project folder

(containing the finished application), navigate into that contract_approval folder and copy the

following folders and files into the root of your Contract Approval project:

o public folder

o src folder

o .env file

o .npmrc file

o package.json file

o package-lock.json file

https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38
https://developer.opentext.com/apis/523afd8e-0180-4500-91fa-713df27b8f19/c1519bcf-64ae-4a72-a472-2d7da5f5ea61/cff45d1c-f9fc-47dd-9929-22f91e2c76d5
https://developer.opentext.com/apis/edb3bec9-8355-4516-a530-8074f90cff0c/907bc6be-3730-11ec-8d3d-0242ac130003/3f35641c-8ba9-481a-8b05-850f09a3b7e9

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 149

You can now open VS Code. The copied folders and files should be visible in the Explorer view.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 150

• The main entry point for the application (being a React application) is the App.jsx file, available

from the /src folder.

From line 20 to 27 of App.jsx you see how an authService is being initialized with the public

(organization) clientId, the different authorization related endpoints, the redirectUri and the

scopes.

As you can see, to construct the different initialization values, process.env is being used, which

corresponds with the environment variables filled in the .env file (available in the project root).

Please update the .env file by replacing <replace with tenant_id> and <replace with

client_public_id> with the corresponding values you saved after deploying the application

project (in the contract_approval_app_config.txt). More specifically, use the tenant id (from text

in tenant ‘<tenant id>‘) and the client public id (Public Client ID value).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 151

Returning to App.jsx, take a further look at the authentication code (line 32 to 72). More

specifically, the different authentication functions provided by the authService and how they are

being used to provide the authorization (reset, login, and logout) capabilities for the contract

approval application.

Also note how a new authContext is being built to hold the authorization context (userName,

idToken and headers with bearer token) coming from the authService. This authContext can

now be passed to the child react components of the App.jsx component to support the different

IM REST API calls.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 152

To finish looking at the App.jsx code let’s examine the main React code, which is located under

the return statement (starting at line 74). Note that the returned React code is wrapped as a

“secured app” in the AuthProvider (using the authentication from the authService).

If we focus on the contents of the Tabs and ApplicationProvider container components, we can

distinguish a four (horizontal) tabs UI layout (with the Tab components representing the tabs and

the TabPanel components representing the corresponding views when clicking the tab). In short,

this code will generate a UI with four horizontally stacked tabs:

o The Created Contracts tab (with the CreatedContractList component providing the “created

contracts list” view to show all newly created contracts, i.e.: where status = ‘CREATED’)

o The Line Manager Tasks tab (with the TasksList component providing the “Line Manager

Approval” tasks view to show all approval tasks for the Line Manager)

o The Risk Manager Tasks tab (with the TasksList component providing the “Risk Manager

Approval” tasks view to show all approval tasks for the Risk Manager)

o The All Contracts tab (with the ContractList component providing the “all contracts” view to

show all contracts in the application, independently of their status)

Note that each of the tab views are React (child) components and that they are, as previously

mentioned, indeed passed the authContext to ensure proper authorization when calling the IM

REST APIs.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 153

• Let’s have a closer look at the first of the four views. The “created contracts list” view (i.e.: the

CreatedContractList React component) does not only show the newly created contracts (status

= ‘CREATED’), but it also provides the button to add new contracts to the system. You can open

the corresponding CreatedContractList.jsx file from the same /src folder you already opened

the App.jsx file from.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 154

The main method of this React component is the render method (starting at line 232) as it returns

the actual “created contract list” UI.

The TableContainer component will provide the table layout to display the list of the different

contracts that have the ‘CREATED’ status. As you can see from the TableHead and TableBody

components, each table row will show the following information for the displayed contract:

o Contract name

o Creation date

o Value

o Risk classification

o View document (this is not a property value but a button to open the actual document in a

viewer)

o Action (this is not a property value but a button to start the contract approval workflow)

o An arrow icon button allowing to open the contract details (the contract attributes screen)

The table rows are generated by iterating over the this.state.contracts array, and in its turn

this.state.contracts is populated by the getContracts method (called when the created

contracts list needs updating).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 155

If you look at the getContracts method on line 112, you can easily recognize the (axios) GET

request to the /cms/instances endpoint of the CMS IM API with the authorization (bearer) token

passed in the headers.

Going back to the render method, let’s also take a look at the AddContract component (line

259), as using this feature will trigger a call to the type instance creation endpoint from the CMS

IM API.

More specifically, it will open the contract creation dialog box to add a contract.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 156

• How the contract creation works is part of the dialog box code, so as the last step in this exercise,

let’s open the AddContract.jsx React component (again from the /src folder) and look at line 222

where the actual action of calling the IM APIs to create the contract happens.

Note that there are two subsequent (axios) POST requests. One at line 228 to upload the file to

the Content Storage Service (CSS) and one at line 246 to create the contract metadata in the

Content Metadata Service (CMS) with the contract’s properties, rendition (linked to the

previously uploaded CSS file), and traits as payload.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 157

Note that the CMS IM API call (starting at line 246) should look very familiar, as it corresponds to

what we’ve already been covering in the Working with the IM APIs exercise. More specifically, if

you look at the CMS API reference and Postman collection respectively, the code contained in

the axios call represents exactly the same as the following two screen shots:

This actually takes us to the end of this exercise, as we have covered the examples of

o getting the list of newly created contracts,

o and creating a new type instance.

Feel free to further explore the Contract Approval code if you want more code examples on how

to talk to the different IM API endpoints and how to expose their features in the Contract Approval

application.

https://developer.opentext.com/apis/14ba85a7-4693-48d3-8c93-9214c663edd2/40e0f1b0-7856-4a2e-b3a5-ed98de7ff806/d311e62a-f4aa-44bc-8b52-29e141e26c38

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 158

REMARK:
In the Contract Approval sample application, we are using the PKCE authorization flow, with the
help of the react-oauth2-pkce React library as it provides an easy-to-use experience for the
developer. PKCE is also the better choice for our sample application, as it allows authenticating with
the IM APIs without the need to store confidential information (such as confidential client id and
client secret).

If you want to further look into authentication and authorization related to the IM APIs, we
recommend you try out the ot2-sso-sample-application available on Github at this location:
https://github.com/opentext/ot2-sso-sample-application.

CONGRATULATIONS!

You have now completely finished building your Contract Approval application. In the next

exercise we will test it and run through the different contract approval scenarios.

https://github.com/opentext/ot2-sso-sample-application

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 159

3.13 [50’] Testing your application
During this exercise we will be testing the Contract Approval application you have just built. We will

run through different scenarios to demonstrate the different behaviors that depend on the automated

and manual choices that can be made within the application.

Once you are done with this section, you will have tested the different application flows and will have

effectively completed the main part of the tutorial. Still, there will be one more remaining exercise that

we recommend you run through. During this bonus exercise, you will learn how to use the otcloud

Command Line Interface (CLI) to perform OpenText Cloud Platform related operations (such as

deploying a project). This is certainly valuable, for example, in context of build automation and CI/CD

use cases.

READ THIS IF YOU SKIPPED THE PREVIOUS EXERCISES:
If you decided to skip ahead and test the application without actually going through the building
exercises, you will need to do a few additional steps before you can start.

To ensure that you can correctly test the Contract Approval application, perform the following
activities:

• Be certain that you have checked and fulfilled the Prerequisites.

• Set up your IDE as described in Setting up the Cloud Developer IDE.

• Connect to your developer organization as described in Adding an organization and testing the
connection.

• Download the finished version of the Contract Approval application (ZIP file) through this link
and extract it.

• Once downloaded and extracted, make sure to open the contract_approval folder in VS Code,
as this is the root of your project.

• Finally, deploy the application into your developer organization as described in Deploying the
application to the IM services.

You are now ready to proceed with this exercise and test the Contract Approval application.

REMARK:
Although you did not go through the steps to build the application yourself, you might still want to
understand how it was built. To that end, you can just browse the previous exercises, and/or look at
the VS Code project you just downloaded.
If you want to dive into the VS Code project, this is a very short explanation of its main project
folders:

• src: contains the JavaScript and React code that communicates with the IM APIs and provides
the User Interface (UI) of the application

• otresources: contains the different models (built with the OpenText Cloud Developer Tools for
VS Code) that will be deployed to the IM services of the OT2 Platform

https://us.v-cdn.net/6030023/uploads/I4OENUZKH8VJ/contract-approval-sample-app.zip

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 160

To test the Contract Approval application, proceed as follows:

• Open your Contract Approval application project in VS Code and open a new Terminal window.

In the Terminal window run the npm install command. This will install all dependencies/libraries

needed by your application to run.

Note that this process can certainly take a while (typically 10 to 15 minutes), so you need to wait

until it completes (as long as the automatically generated node_modules folder size increases,

the process is still ongoing).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 161

Once the npm install process has completed, you can launch the application using npm start.

This will result in a new browser window opening on https://localhost:4000.

Click the Advanced button and choose to Proceed to localhost (unsafe). Note that the screen

shots are of Google Chrome and that the equivalent action on your own web browser can be

different.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 162

Log in using your tenant service account email (as username) and password. Again, if you have

been following the exact tutorial steps, the password should be available from the

contract_approval_app_config.txt file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 163

• You are now logged in to your Contract Approval application. Let’s have a look at the different

tabs (the four tabs we previously described when discussing the application code).

o CREATED CONTRACTS: this tab shows all newly created contracts that have not yet been

submitted for approval (i.e.: contracts with the status attribute equal to ‘CREATED’)

o LINE MANAGER APPROVAL TASKS: this tab shows all approval tasks to be performed by

the Line Manager

o RISK MANAGER APPROVAL TASKS: this tab shows all approval tasks to be performed by

the Risk Manager

o ALL CONTRACTS: this tab shows all contracts, independently of their status (i.e.: newly

created, under approval, approved, rejected, expired)

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 164

• Now that we have looked at the different tabs, let’s create and approve our first contract.

Let’s start with the simplest approval process, i.e.: create a contract with the following

characteristics:

o Type: standard contract (doesn’t require solvency check)

o Value: below 1000 (doesn’t require Line Manager approval)

o Risk classification: below 4, i.e.: NONE, LOW or MEDIUM (doesn’t require Risk Manager

approval)

Select the CREATED CONTRACTS tab and click the + ADD button to open the contract creation

form.

From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 165

To help with selecting a file that matches the intended contract properties (certainly the risk

classification, as this gets determined by what the Magellan Risk Guard text mining service

discovers in the document), we have provided a test_documents folder under the finished

version of the Contract Approval application project.

From this test_documents folder, open the 01_standard_contracts subfolder and select the

Standard Contract [RISK = 1-NONE].pdf file.

Make sure the Standard Contract option is selected and fill the contract properties as follows:

o Document name: First standard contract

o Contract value: 500

o Contract requester email: <your email>

Click Add to create the contract.

At the bottom of the screen, the creation of your new contract is confirmed by a “Contract added

successfully” message.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 166

Your first standard contract is now created. Let’s explore the contract list capabilities from this

CREATED CONTRACTS view.

First, note that the Risk classification property indeed shows NONE as risk level. Click on the

icon right next to the NONE risk classification value to see which terms the call to the Magellan

Risk Guard API has identified and extracted.

A few names, addresses, geographic locations, and organization names were found, but nothing

that warrants increasing the risk level (hence risk classification = NONE). Click CLOSE to close

the Extracted Terms information screen.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 167

Click on the ORIGINAL button (in the View document column) to view the uploaded document

content.

The file content of the contract indeed displays to be viewed.

Click CLOSE to close the document viewer screen.

Before requesting to start the contract approval process (clicking the REQUEST APPROVAL

button under the Action column), click on to view the contract details.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 168

In the Contract details screen, you can see two tabs. The first one shows the contract

properties.

Note that the PROPERTIES tab indeed displays a status of ‘CREATED’ and that the risk

classification is 1 (which is the corresponding integer value for the NONE risk level).

Click the APPROVALS tab to have a look at the different approvals for this contract.

The APPROVALS tab displays the different approval steps (traits) for the standard contract type

(Automatic Approval, Line Manager Approval and Risk Manager Approval). As you can see,

the only approval step that has been marked as required is the Automatic Approval.

Click CLOSE to close the Contract details screen.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 169

Back into the CREATED CONTRACTS view, we can now launch the approval workflow. Click the

REQUEST APPROVAL button in the Action column to do that.

At the bottom of the screen the “Approval requested successfully” message confirms the approval

process has been started.

The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer

in ‘CREATED’ status.

Since the value of the contract is below 1000, there is no approval task waiting in the Line

Manager task inbox.

There is also no approval task waiting in the Risk Manager task inbox, as the risk classification is

NONE (1) which is certainly below HIGH (4).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 170

When you open the ALL CONTRACTS view, you will see that the contract has been

automatically approved (Status column shows APPROVED status).

Let’s now have another look at the contract details as well, and more specifically, the approval

steps/traits (click and select the APPROVALS tab).

As you can see, the APPROVALS tab still shows that only the Automatic Approval was

required, but with the difference that it has now been granted by Approver SYSTEM with the

Approver role of Automatic Approval at a specific Approval date and time.

Click CLOSE to return to the ALL CONTRACTS view.

Your first standard contract has now been approved, and you should have received (due to the

email task in the workflow) a Contract Approval Status email from noreply@mycompany.com.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 171

• The first contract we just created and approved has allowed us to go over the different application

components and run through the contract approval process. As you know from building the

workflow model, there are different possible scenarios that we cater for (standard contract vs.

loan contract, solvency check, line manager approval, risk manager approval, automatic approval,

reject, and expire). For the rest of this exercise, we will go through these different scenarios by

creating and approving (or rejecting, and even expiring) additional contracts.

The second contract we will be creating will follow the most extensive process flow,

i.e.: we will create a contract with the following characteristics:

o Type: loan contract (requires solvency check)

o Monthly loan cost is below or equal to 25% of monthly income (requester is solvent, so

automatic solvency check should not reject the contract approval request)

o Value: above 1000 (requires Line Manager approval)

o Risk classification: above 3, i.e.: HIGH or VERIFY HIGH (requires Risk Manager approval)

Select the CREATED CONTRACTS tab and click the + ADD button to open the contract creation

form.

From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 172

From the test_documents folder, open the 02_loan_contracts subfolder and select the Loan

Contract [RISK = 5-VERY HIGH].pdf file.

Select the Loan Contract option and fill the contract properties as follows:

o Document name: First loan contract

o Contract value: 12000

o Monthly installments: 12

o Yearly income: 100000

o Contract requester email: <your email>

Click Add to create the contract.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 173

Click on the icon right next to the VERY HIGH risk classification value to see which terms the

call to the Magellan Risk Guard API has identified and extracted.

Contrary to the previous contract we created, this contract contains high risk personal information,

such as a social security number (considered very high risk), a credit card number, a bank

account, and many person names (hence risk classification = VERY HIGH). Some addresses,

geographic locations, and organization names were also found. Click CLOSE to close the

Extracted Terms information screen.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 174

Before requesting to start the contract approval process, click on to view the contract details for

your first loan contract.

In the PROPERTIES tab of the Contract details screen note that, since this is a loan contract,

the monthly installments and yearly income are also displayed. The risk classification is now

equal to 5 (the corresponding integer value for the VERY HIGH risk level).

Click the APPROVALS tab to have a look at the different approvals for this contract.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 175

The APPROVALS tab displays the different approval steps (traits) for the loan contract type

(Automatic Approval, Line Manager Approval, Risk Manager Approval, and the additional

Solvency Check). As you can see, there are now more approval steps that have been marked as

required: the Automatic Approval and the Solvency Check.

Click CLOSE to close the Contract details screen.

Back into the CREATED CONTRACTS view, we can now launch the approval workflow. Click the

REQUEST APPROVAL button in the Action column to do that.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 176

The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer

in ‘CREATED’ status. Let’s have a look at the ALL CONTRACTS tab to see its current status.

The status is now ‘LINE MANAGER APPROVAL’ (since the value of the contract is above 1000 a

Line Manager approval is required).

Click on to view the contract details again.

You can now see that the Solvency Check approval has been granted (since the requester is

indeed solvent) and that the Line Manager Approval is required (and the approver has been

assigned).

Go to the LINE MANAGER TASKS tab. As you can see, an approval task is waiting for the Line

Manager to approve.

Click APPROVE to approve as the Line Manager.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 177

The contract has now disappeared from the LINE MANAGER TASKS view, as it is no longer in

‘LINE MANAGER APPROVAL’ status. Let’s have a look at the ALL CONTRACTS tab to see its

current status.

The status is now ‘RISK MANAGER APPROVAL’ (since the risk classification of the contract is

VERY HIGH).

Click on to view the contract details again.

You can now see that the Line Manager Approval has been granted and that the Risk Manager

Approval is required (and the approver has been assigned).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 178

Go to the RISK MANAGER TASKS tab. As you can see, an approval task is waiting for the Risk

Manager to approve.

Click APPROVE to approve as the Risk Manager.

The contract has now disappeared from the RISK MANAGER TASKS view, as it is no longer in

‘RISK MANAGER APPROVAL’ status. When you open the ALL CONTRACTS view, you will see

that the contract has been automatically approved (Status column shows APPROVED status).

Click on to view the contract details to check the different approvals (traits).

You can now see that both the Risk Manager Approval and the Automatic Approval have been

granted. I.e.: all four approvals were required for this loan contract, and all four approvals have

been granted.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 179

Your first loan contract has now been approved, and you should have received the corresponding

Contract Approval Status email from noreply@mycompany.com.

• We have now successfully approved two contracts with two completely different approval flows.

Let’s continue with the scenario where an approver does not approve (i.e.: rejects) the contract.

We will create a contract with the following characteristics:

o Type: standard contract

o Value: above 1000 (requires Line Manager approval)

o Risk classification: above 3, i.e.: HIGH or VERIFY HIGH (requires Risk Manager approval)

Select the CREATED CONTRACTS tab and click the + ADD button to open the contract creation

form.

From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 180

From the test_documents folder, open the 01_standard_contracts subfolder and select the

Standard Contract [RISK = 4-HIGH].pdf file.

Make sure the Standard Contract option is selected and fill the contract properties as follows:

o Document name: Second standard contract

o Contract value: 5000

o Contract requester email: <your email>

Click Add to create the contract.

Click the REQUEST APPROVAL button in the Action column to launch the approval workflow.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 181

The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer

in ‘CREATED’ status. Go to the LINE MANAGER TASKS tab. You should see the new Line

Manager approval task.

Click REJECT to reject the contract approval.

The contract has now disappeared from the LINE MANAGER TASKS view, as it is no longer in

‘LINE MANAGER APPROVAL’ status. When you open the ALL CONTRACTS view, you will see

that the contract has indeed been rejected (Status column shows REJECTED status).

Click on to view the contract details to check the different approvals (traits).

You can see the contract is rejected, since the Line Manager Approval has NOT been granted

while it has a date at which the approval task was completed.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 182

Your second standard contract has NOT been approved (i.e.: it has been rejected), and you

should have received the corresponding Contract Approval Status email from

noreply@mycompany.com.

• The last scenario we want to run through is to let an approval task expire (happens after 5

minutes).

We will create a contract with the following characteristics:

o Type: loan contract

o Value: below 1000 (doesn’t require Line Manager approval)

o Risk classification: above 3, i.e.: HIGH or VERIFY HIGH (requires Risk Manager approval)

Select the CREATED CONTRACTS tab and click the + ADD button to open the contract creation

form.

From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 183

From the test_documents folder, open the 02_loan_contracts subfolder and select the Loan

Contract [RISK = 4-HIGH].pdf file.

Select the Loan Contract option and fill the contract properties as follows:

o Document name: Second loan contract

o Contract value: 900

o Monthly installments: 12

o Yearly income: 40000

o Contract requester email: <your email>

Click Add to create the contract.

Click the REQUEST APPROVAL button in the Action column to launch the approval workflow.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 184

The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer

in ‘CREATED’ status. Go to the RISK MANAGER TASKS tab. You should see the new Risk

Manager approval task.

Since we want to test whether or not the approval task will expire, you need to wait. You have

configured the timeout wait time to be 5 minutes, so wait a little longer than that, let’s say 10

minutes, and refresh your browser (you might have to log in again as well).

After refreshing your application screen, go back to the RISK MANAGER TASKS view.

The contract has now disappeared from the RISK MANAGER TASKS view, as it is no longer in

‘RISK MANAGER APPROVAL’ status.

When you open the ALL CONTRACTS view, you will see that the contract approval has indeed

expired (Status column shows EXPIRED status).

Click on to view the contract details to check the different approvals (traits).

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 185

You can see the contract is not approved by the Risk Manager, since the Risk Manager

Approval has NOT been granted. However, you can also see that there has not been a rejection

action as the approval date is not filled. The approval activity simply timed out.

Your second loan contract has not been approved since the Risk Manager Approval step expired,

and you should have received the corresponding Contract Approval Status email from

noreply@mycompany.com.

This calls for a second CONGRATULATIONS!

You have now completely finished building and testing your Contract Approval application. You

are at the end of the main part of the tutorial.

There is one more bonus exercise where you will learn about the otcloud CLI. If you are

interested in build automation and CI/CD for your applications, we recommend you certainly do

that exercise as well.

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 186

3.14 [00’] Bonus exercise: Using the otcloud
Command Line Interface

COMING SOON

OpenText Cloud Developer Tutorial

Copyright © 2022 Open Text. All rights reserved. Trademarks owned by Open Text. 187

About OpenText

OpenText enables the digital world, creating a better way for organizations to work with information,

on-premises or in the cloud. For more information about OpenText (NASDAQ/TSX: OTEX),

visit opentext.com.

Connect with us:

OpenText CEO Mark Barrenechea’s blog

Twitter | LinkedIn

http://www.opentext.com/
https://blogs.opentext.com/category/ceo-blog/
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
https://www.linkedin.com/company/2709/

	1 Introduction
	2 Prerequisites
	2.1 [20’] Setting up an OpenText Developer Trial Account

	3 Building the Contract Approval application
	3.1 [25’] Setting up the Cloud Developer IDE
	3.2 [10’] Adding an organization and testing the connection
	3.3 [15’] Creating an OpenText project
	3.4 [10’] Creating a namespace
	3.5 [15’] Creating a trait definition
	3.6 [20’] Creating a file type definition
	3.7 [10’] Creating a file type definition that is a subtype
	3.8 [05’] Creating a folder type definition
	3.9 [120’] Creating a workflow model
	3.10 [10’] Deploying the application to the IM services
	Adding the redirect URL for your application authentication flow
	Resetting the Tenant password

	3.11 [25’] Working with the IM APIs
	3.12 [20’] Building the application
	3.13 [50’] Testing your application
	3.14 [00’] Bonus exercise: Using the otcloud Command Line Interface

	About OpenText

