
OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 1

OpenText™ Thrust
Services Tutorial
Building a Contract Approval application

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 2

This tutorial has been created for software version OpenText™ Thrust Studio 24.4.1.

It is also valid for subsequent software releases unless OpenText has made newer documentation

available with the product, on an OpenText website, or by any other means.

Note that if you are using this tutorial with a later version of the OpenText™ Thrust Studio VS Code

extension pack, the screenshots and usage might not always correspond.

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Tel: +1-519-888-7111

Toll Free Canada/USA: 1-800-499-6544 | International: +800-4996-5440

Fax: +1-519-888-0677

Support: https://support.opentext.com

For more information, visit http://www.opentext.com

Copyright © 2025 Open Text. All Rights Reserved.

Trademarks owned by Open Text.

One or more patents may cover this product. For more information, please visit

https://www.opentext.com/patents

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this

publication. However, Open Text Corporation and its affiliates accept no responsibility and offer no

warranty whether expressed or implied, for the accuracy of this publication. This includes the

application code that is being provided with this tutorial, as this code is intended for educational

purposes only and should not be used in a production setting.

Last updated: 01/21/2025

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 3

Contents
Introduction ... 5

1 [5’] Get started .. 8

1.1 Audience .. 8

1.2 Prerequisites .. 8

2 [20’] Set up the OpenText Thrust Studio IDE .. 9

2.1 Download and install VS Code .. 9

2.2 Add the OpenText Thrust Studio extension pack to VS Code .. 13

2.3 Install the LTS version of Node.js .. 16

2.4 Verify the Node.js installation from VS Code... 17

3 [10’] Set up a connection to the developer organization ... 18

3.1 Add an organization profile .. 18

3.2 Test the connection ... 22

3.3 Add a tenant to the organization profile ... 24

4 [10’] Create an OpenText project ... 26

4.1 Create a file system folder for the Contract Approval application project 26

4.2 Set up an OpenText project for the Contract Approval application 28

4.3 Install Java ... 30

5 [5’] Create a namespace .. 31

5.1 Create the Contract Approval namespace .. 31

6 [10’] Create a trait... 35

6.1 Create the Approval trait .. 35

7 [25’] Create types ... 40

7.1 Create the Contract type.. 41

7.2 Create the Loan Contract type .. 46

7.3 Create the Customer type.. 48

8 [10’] Create (user) groups ... 50

8.1 Create the administrators group .. 50

8.2 Create the line_managers group ... 52

8.3 Create the risk_managers group ... 54

8.4 Create the contract_approval_users group ... 56

9 [15’] Create ACLs ... 58

9.1 Create the created ACL ... 59

9.2 Create the pending_approval ACL .. 61

9.3 Create the completed ACL .. 63

10 [25’] Create a decision table ... 65

10.1 Create the Required Approvals decision table .. 66

11 [140’] Create workflows ... 74

11.1 Create the Solvency Check workflow .. 75

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 4

11.2 Create the Manager Approval workflow .. 90

11.3 Create the Contract Approval workflow ... 107

12 [25’] Deploy an application to the OpenText Thrust Services .. 169

12.1 Deploy the Contract Approval application and get the application credentials 169

12.2 Verify that the application is deployed ... 170

12.3 Add the redirect URL for the application authentication flow ... 172

12.4 Add the application users to the application groups .. 175

13 [25’] Work with the OpenText Thrust Services APIs .. 184

13.1 Download and install Postman .. 184

13.2 Download the Contract Approval application... 185

13.3 Import the Postman collection and environment into Postman 187

13.4 Verify the deployment of the application models using the OpenText Thrust Services APIs
 191

14 [30’] Build the Contract Approval application .. 200

14.1 Import the Contract Approval App code into your project .. 201

14.2 Understand the main logic of the Contract Approval application 203

14.3 Authenticate and get authorized with the OpenText Thrust Services APIs 205

14.4 Set the environment variables ... 209

14.5 Use the content (CSS and CMS) APIs .. 210

14.6 Use the Workflow Service API ... 215

14.7 Use the Viewer Service API... 217

14.8 Use the Risk Guard Service API ... 220

15 [60’] Test the Contract Approval application .. 222

15.1 Start the Contract Approval application and sign in .. 223

15.2 Approve a standard contract that only requires automatic approval (no additional required
approvals) .. 229

15.3 Approve a loan contract that requires all additional approvals .. 242

15.4 Reject a manual contract approval task .. 257

15.5 Expire a manual contract approval task .. 262

16 [15’] Bonus exercise: Use the ocp command line interface .. 267

16.1 Install the ocp cli .. 268

16.2 Use the developer profile ... 269

16.3 Deploy the application project from command line .. 270

About OpenText .. 273

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 5

Introduction

This tutorial is intended as a comprehensive end-to-end course for pro-code developers. Throughout

the different sections you will learn how to:

• Build an application that utilizes the OpenText Thrust Services APIs.

• Develop a React based application in OpenText Thrust Studio, the bespoke Integrated
Development Environment (IDE) based on Microsoft Visual Studio Code (VS Code) to use when
developing on OpenText Thrust Services.

The application you will be building is a simple Contract Approval application utilizing the OpenText

Thrust Services. This application will allow you to do the following:

• Upload documents

• Store document related metadata for two types of contracts

• View documents

• Perform document analysis to detect PII (Personally Identifiable Information)

• Use a decision table to determine the required approvals

• Use a workflow to automate the different contract approval steps

The following OpenText Thrust Services APIs will be used to build the Contract Approval application:

Service API Purpose

Content Storage Content Storage Service (CSS) Uploading and storing of documents

Content Metadata Content Metadata Service (CMS) Defining and storing of document
metadata

Viewing & Transformation Viewer Service Viewing documents

Risk Guard Risk Guard Service Document analysis

Decision Decision Service Defining and executing business
rules (decision tables)

Workflow Workflow Service Defining, executing, and auditing
business processes (workflows)

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 6

In this tutorial, the following exercise modules detail the different steps for building the Contract
Approval application:

1. Get started
5 min

2. Set up the OpenText Thrust Studio IDE
20 min

3. Set up a connection to the developer organization
10 min

4. Create an OpenText project
10 min

5. Create a namespace
5 min

6. Create a trait
10 min

7. Create types
25 min

8. Create (user) groups
10 min

9. Create ACLs
15 min

10. Create a decision table
25 min

11. Create workflows
140 min

12. Deploy an application to the OpenText Thrust Services
25 min

13. Work with the OpenText Thrust Services APIs
25 min

14. Build the Contract Approval application
30 min

15. Test the Contract Approval application
60 min

16. Bonus exercise: Use the ocp command line interface
15 min

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 7

You can directly open the finished application in VS Code without going through all the exercise

modules and familiarize yourself with the OpenText Thrust Services API example code, different

models, and the Contract Approval sample application. The project sources for the completed

Contract Approval application are available for download. To directly run the completed project from

VS Code, see Test the application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 8

1 [5’] Get started

The following software environment is used:

Software Version

Operating System Windows 11 Enterprise 22H2, 64-bit

Microsoft Visual Studio Code 1.96.2

Node.js 22.13.0 LTS

Java 21.0.5

OpenText™ Thrust Studio 24.4.1

Postman 11.27.3

Google Chrome 132.0.6834.84 (64-bit)

Note

The procedure steps, images, and the other references used in this tutorial are

based on the above environment. If you are using any other environment or

software versions, refer to the software documentation for that version.

1.1 Audience

This tutorial is intended for pro-code developers who want to learn how to build applications that
utilize the OpenText Thrust Services APIs.

1.2 Prerequisites

Make sure you can sign in to the developer.opentext.com website and have an active trial or paid
developer plan.

If you do not have an active plan, navigate to developer.opentext.com/plans to sign up for one.

For a detailed description on how to create a developer account and sign up for a developer trial,
refer to: developer.opentext.com/imservices/trial.

https://developer.opentext.com/
https://developer.opentext.com/plans
https://developer.opentext.com/imservices/trial

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 9

2 [20’] Set up the OpenText Thrust

Studio IDE

Learn how to:

• Download and install VS Code

• Add the OpenText Thrust Studio extension pack to VS Code

• Install the LTS version of Node.js

2.1 Download and install VS Code
1. Go to https://code.visualstudio.com/download and download the Microsoft VS Code distribution

that matches your system.

Note

To install VS Code on a 64-bit Windows 11 system, choose to download the x64

User Installer for Windows and install the latest version of VS Code.

Important

OpenText Thrust Studio is tested with Windows and Mac Operating Systems. You
can use Linux Operating System but if you run into problems, OpenText might not
be able to provide a solution.

2. Save and run the installer.

3. Select I accept the agreement and click Next to continue.

4. Select the installation destination location and click Next. You can use the suggested default
location.

5. Keep the default setting for the selecting of the start menu folder and click Next.

6. Select all the additional tasks under Other and optionally select Create a desktop icon. Click
Next to continue.

https://code.visualstudio.com/download

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 10

7. Verify your choices and click Install to start the VS Code installation.

8. After the installation is complete, uncheck “Launch Visual Studio Code” and click Finish to close
the VS Code Setup Wizard.

9. In the Windows Start menu, type vs code in the search box and select the Visual Studio Code

application.

Tip

You can Pin to taskbar for easy access from the task bar.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 11

10. The Walkthrough: Setup VS Code wizard is displayed when VS Code is launched for the first
time.

11. Select a theme and click Mark Done to confirm your choice.

Note

For this tutorial the Dark Modern theme is selected. Take this into account when

comparing your VS Code appearance with the VS Code screen shots throughout

this document.

12. The standard VS Code welcome page is now displayed.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 12

13. Make sure Show welcome page on startup is not selected so that the page does not appear
when VS Code is launched every time.

14. Close the welcome page.

Next step:

Add the OpenText Thrust Studio extension pack to VS Code.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 13

2.2 Add the OpenText Thrust Studio extension pack
to VS Code

1. On the VS Code Activity Bar, click Extensions.

2. On the Search Extensions in Marketplace search bar, type opentext and choose to install the

OpenText™ Thrust Studio extension pack.

Note

If prompted, click Reload to ensure that the installed VS Code extension pack is

enabled.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 14

3. On the Activity Bar, click the OpenText Thrust Studio button .

4. This opens the OpenText Thrust Studio view.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 15

Next step:

Install the latest Long-Term Support (LTS) version of Node.js to support building and running the

Contract Approval application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 16

2.3 Install the LTS version of Node.js
1. Go to https://nodejs.org/en/download/.

2. Locate the Node.js LTS version that corresponds with your Operating System and download the
installer.

3. Run the installer. The Node.js Setup Wizard is displayed.

4. Click Next.

5. Select I accept the terms in the License Agreement and click Next to continue.

6. Select the installation destination location and click Next. You can use the suggested default
location.

7. From the Custom Setup screen, you can accept the default and click Next.

8. From the Tools for Native Modules screen, you can accept the default and click Next.

9. Click Install to start the installation.

10. After the setup is complete, click Finish to close the Node.js Setup Wizard.

https://nodejs.org/en/download/

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 17

2.4 Verify the Node.js installation from VS Code
After Node.js is installed, verify that it is ready to be used when running Node.js code from VS Code.

1. Make sure VS Code is not still open (as you need to initialize it again) and open it.

2. In VS Code, select Terminal > New Terminal.

3. In the TERMINAL, type node --version. The installed version of Node.js is displayed (for

example, 22.13.0).

Next exercise module:

Set up a connection to the developer organization.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 18

3 [10’] Set up a connection to the

developer organization

Learn how to:

• Add an organization profile in VS Code to allow connecting to your developer organization

• Test the connection

• Add a tenant to the organization profile to allow deploying applications to that tenant

3.1 Add an organization profile
1. Open VS Code and on the Activity Bar, select the OpenText Thrust Studio view.

2. In the PROFILES section, click the New Organization Profile button to create a new
organization profile.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 19

3. In the organization profile screen, fill the property fields:

The following table describes the organization profile property fields:

Property Description

Profile name The profile name is used as a display name in the
PROFILES section.

Organization name The name of the organization. It is recommended to use
the value from the organization overview page in Admin
Center.

For more information on accessing the organization
overview page in Admin Center, see Application
Administration.

Organization ID The unique identifier for the organization.

For more information about how to view/copy your
organization ID, see Application Administration.

Public client ID The unique identifier of the public OAuth service client
for the organization. Make sure to use the client id of the
public service client.

For more information about service clients and how to
view/copy a client ID, see Application Administration.

Region The region where the organization is made available. For
this tutorial we select the us region, but if your developer
subscription (trial or other) is in a different region, you
must select that region.

For more information about regions and how to see what
is your region from Admin Center, see Application
Administration.

https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration
https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration
https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration
https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration
https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration
https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 20

4. Select File > Save to save the organization profile.

Note

OpenText Thrust Studio configuration artifacts such as organization connection

set up, project set up, and different model configurations use the standard VS

Code file saving functionality. To save your changes to any configuration artifact,

press Ctrl+S (for Windows systems) or select File > Save.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 21

5. After saving, the organization profile is listed as the default profile in the PROFILES section and
the tab above the organization profile is renamed to the profile name. On the organization profile
screen an Authentication section with the Connect button appears.

Next step:

Test the connection.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 22

3.2 Test the connection
1. Click Connect to test the newly configured connection to your developer organization.

2. On the sign in page, authenticate with your developer.opentext.com username and password.

Note

If you are already signed in, the browser will immediately show the

Authentication completed page.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 23

3. After successful authentication, a confirmation message is displayed in VS Code.

4. Close the organization profile screen.

Next step:

Add a tenant to the organization profile.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 24

3.3 Add a tenant to the organization profile

1. In the PROFILES section, right-click the profile and select Add Tenant.

2. Choose the correct tenant from the tenant selection dropdown (for developer trials there is only
one with Tenant 1 as the default name, but for other developer subscriptions there can be
multiple).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 25

The following table describes the tenant property fields:

Property Description

Tenant name The name of the tenant. It is recommended to use the proposed value as it
matches the tenant name from the tenant page in Admin Center.

For more information on accessing the tenant page in Admin Center, see
Application Administration.

Tenant ID The unique identifier for the tenant.

Default tenant for
deployment

Whether the tenant is the default tenant for deployment. That is, if upon
deployment the user does not explicitly choose to deploy to a specific tenant
in a specific organization, the default tenant of the default organization will be
used as deployment target.

Note

The first tenant added to the organization profile is made the default tenant for

deployment.

Next exercise module:

Create an OpenText project.

https://developer.opentext.com/imservices/developertools/developeradmin/documentation/applicationadministration

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 26

4 [10’] Create an OpenText project

Learn how to:

• Create a folder in your file system for building the Contract Approval application

• Set up an OpenText project for the Contract Approval application models

4.1 Create a file system folder for the Contract
Approval application project

1. In your system’s file explorer (for example, Windows File Explorer) create a new folder. Name the
folder contract_approval.

2. Do any one of the following to open the Contract Approval application project folder in VS Code:

• In the Windows File Explorer, right-click the newly created contract_approval folder and

select Show more options and then click Open with Code.

• In VS Code, click File > Open folder and select the folder.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 27

Next step:

Set up the OpenText project to allow building the Contract Approval application models.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 28

4.2 Set up an OpenText project for the Contract
Approval application

1. Go to the OpenText Thrust Studio view and click Set Up Project.

2. Fill the OpenText project properties:

Field Value

Project name The project name has been automatically populated from the project
folder name and does not need to be changed.

Application display name Contract Approval

Application name The system automatically populates the application name from the
display name. Leave the application name to the generated
contract_approval value.

Application version 1.0

Application vendor Name of the organization that owns the application. In this example,
My Company is used.

Application description Contract Approval Application built on top of

the OpenText Thrust Services

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 29

Note

You can always view and modify the OpenText project properties from the VS

Code Explorer view by choosing OpenText: Project Properties from the

contextual menu of your project (root) folder or any of its subfolders, or by

clicking/opening the .otproject file.

3. Save and close the OpenText project properties form.

Note

If Java is not installed on your system, VS Code will display the following three

warning messages:

You can click Don’t display again to stop these warning messages from popping

up. However, in addition to the pop ups, the error message will show under the

PROBLEMS tab until Java is installed. To open the PROBLEMS tab, select View >

Problems.

Tip

Install the latest LTS Java version. To install the LTS Java version, see Install Java.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 30

4.3 Install Java
1. Go to https://www.oracle.com/java/technologies/downloads.

2. Download and install the latest Java LTS version for your operating system.

Note

For this tutorial, the latest LTS JDK version is 21.0.5, and the x64 MSI Installer for

Windows is used.

Next exercise module:

Create a namespace.

https://www.oracle.com/java/technologies/downloads

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 31

5 [5’] Create a namespace

Learn how to:

• Create a namespace model

A namespace allows grouping different type, trait, workflow, and decision table definitions together.

For example, within the context of an application.

For more information on namespaces, see Define a namespace, trait and "FILE" document type

section in the Content Metadata Service product documentation or the Namespace resource

documentation in the Content Metadata Service API reference.

5.1 Create the Contract Approval namespace
1. In VS Code, switch to the OpenText Thrust Studio view.

Note

After setting up the OpenText project, the MODELS section displays a tree view

and allows you to explore the different models in your application project.

https://developer.opentext.com/imservices/products/contentmetadataservice/documentation/contentmetadataoverview/7
https://developer.opentext.com/imservices/products/contentmetadataservice/apis/contentmetadata

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 32

2. To create a new namespace, in the MODELS section, do any one of the following:

• Click the New Model button .

• Click the More Actions button and select New Model.

Note

There are different methods to create models. This is the first method. To

understand the other methods for creating models, see Create the Approval trait

and Create the Contract type.

3. From the list, select New Namespace.

4. In the input box, type contract_approval for the (file) name of the namespace and press

Enter.

5. Fill the Approval namespace properties using the following details:

Field Value

Display name The display name for the namespace. This is automatically populated based on the
previously chosen namespace name (the model file name).

Leave the value to be Contract Approval.

Name The technical name for the namespace. This name must be unique within the
tenant, and it is automatically populated based on the previously chosen
namespace name (the model file name).

Leave the value to be contract_approval.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 33

Field Value

Prefix The prefix representing the namespace. It is used for the (internal) system names of
traits and types that belong to the namespace. The prefix must be unique within the
tenant.

Enter ca as value.

Description Contract Approval Namespace

6. Save the Contract Approval namespace model.

7. In the Save As dialog box that opens when saving the model, select the otresources folder as
target folder and make sure the file name is contract_approval.otns.

Note

The otresources folder is the model folder and it gets generated automatically

during the project setup. You must save all the models inside this folder or one of

its subfolders (as you can create sub folders to organize your work).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 34

8. Click Save and close the namespace model.

9. The model explorer displays the new contract_approval namespace under Namespaces. The
model explorer shows the different models according to their unique key, which in context of a
namespace is the name property.

Next exercise module:

Create a trait.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 35

6 [10’] Create a trait

Learn how to:

• Create a trait model

A trait allows grouping several attributes into one complex multi-attribute property. Trait instances can

be dynamically added to a type instance as part of the business process when using the application.

Traits can also be made mandatory in a type so that they must always be added when creating a new

type instance. In this tutorial, the concept of mandatory traits is used to represent the different

approval steps on a contract.

For more information on traits, see Define a namespace, trait and "FILE" document type and Create

instances using custom type with trait sections in the Content Metadata Service product

documentation or the Trait resource documentation in the Content Metadata Service API reference.

6.1 Create the Approval trait
1. In VS Code, switch to the OpenText Thrust Studio view.

https://developer.opentext.com/imservices/products/contentmetadataservice/documentation/contentmetadataoverview/7
https://developer.opentext.com/imservices/products/contentmetadataservice/documentation/contentmetadataoverview/8
https://developer.opentext.com/imservices/products/contentmetadataservice/documentation/contentmetadataoverview/8
https://developer.opentext.com/imservices/products/contentmetadataservice/apis/contentmetadata

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 36

2. To create a new trait, press F1 or Ctrl+Shift+P.

The command palette is displayed.

Note

There are different methods to create models. This is the second method. To

understand the other methods to create models, see Create the Contract Approval

namespace and Create the Contract type.

3. In the command palette, type trait. The command list is filtered and the entries containing trait

are displayed.

4. From the list, select OpenText: New Trait.

5. In the Provide a name for your new trait input box, type approval for the (file) name of the

trait and press Enter.

Note

The chosen name of “approval” reflects the purpose of this specific trait.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 37

6. Fill the Approval trait properties using the following details:

Field Value

Namespace The namespace to which the trait belongs.

Select the contract_approval namespace as the namespace.

Note

OpenText Thrust Studio dynamically updates the

different model reference lists. For a trait, the list of

available namespaces is dynamically updated based on

the namespaces that exist in the project.

Display name The display name is the user-friendly name for the trait. This does not have to be
unique, and it is automatically populated based on the previously chosen trait name
(the model file name).

Leave the value to be Approval.

Name The technical name for the trait. This name must be unique within the context of
the tenant and selected namespace. It is automatically populated based on the
previously chosen trait name (the model file name).

Leave the value to be approval.

Description Approval Trait

Attributes The attributes list defines the different attributes of the trait.

The following are the attribute properties:

• Display name: The attribute display name. OpenText recommends that the
display name is unique.

• Name: The attribute technical name. The value must be unique within the trait,
and it is automatically populated based on the specified display name.

• Data type: The data type of the attribute. The data type can be bigint, boolean,
date, datetime, double, id, integer, string, or user.

• Default value: The default value for the attribute, which is automatically
assigned when creating a new instance of the trait. Whether it is possible to
assign a default value and how to assign it depends on the chosen data type.

• Size: Indicates the maximum length constraint for the string attribute.
Applicable only to the string data type.

• Repeating: Indicates if the attribute can have multiple values.

• Unique: Indicates if the attribute needs to be unique across all instances of the
trait.

• Required: Indicates if the attribute must have a value when creating an
instance of the trait.

• Read-only: Indicates if the attribute can be modified after creation.

• Searchable: Indicates if the attribute can be filtered on when performing a
search.

• Sortable: Indicates if the attribute can be used to sort a search result.

You will add the attributes for the Approval trait in the next step.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 38

7. In the Attributes list, click the Add button to add the different attributes.

The Approval trait represents an approval step, and the following table describes each attribute
and the property values to assign:

Attribute
description

Display
name

Name Data
type

Default
value

Size Boolean
properties

Whether or not the
approval is required

Is

required
is_required boolean searchable,

sortable

Whether or not the
approval has been
granted

Has been

granted
has_been_granted boolean searchable,

sortable

The email address of
the approver

Approver approver string 128 searchable,
sortable

The role of the
approver

Approver

role

approver_role string 64 searchable,
sortable

The exact date and
time at which the
approval request has
been approved or at
which it has been
rejected

Approval

date

approval_date date searchable,
sortable

8. Save the Approval trait model.

9. In the Save As dialog box that opens when saving the model, select the otresources folder as
target folder and make sure the file name is approval.ottrait.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 39

Note

The otresources folder is the model folder and it gets generated automatically

during the project setup. You must save all the models inside this folder or one of

its subfolders (as you can create sub folders to organize your work).

10. Click Save and close the trait model.

11. The model explorer displays the new approval (contract_approval) trait under Traits. The
model explorer shows the different models according to their unique key, which in context of a
trait is the combination of the namespace and name properties.

Next exercise module:

Create types.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 40

7 [25’] Create types

Learn how to:

• Create a file type model

• Create a file type model that is a subtype

• Create a folder type model

A type is the main component for building an application’s (custom) data model. A type has its own

attributes and required traits that are added to the type instances when they are created.

A type can be of the following categories:

• file

• folder

• object

• relation

The following types will be created in this exercise module:

Type Description

Contract
The Contract type represents a standard/base contract. It is the first out of two file
types.

Loan Contract
The Loan Contract type is a specialization/subtype of the standard contract. It is the
second file type.

Customer
The Customer type is the folder type. It is intended to contain all contracts (standard
contracts and loan contracts) related to a specific customer.

For more information about types, see Define a namespace, trait and "FILE" document type and
Create instances using custom type with trait sections in the Content Metadata Service product
documentation or the Type resource documentation in the Content Metadata Service API reference.

https://developer.opentext.com/imservices/products/contentmetadataservice/documentation/contentmetadataoverview/7
https://developer.opentext.com/imservices/products/contentmetadataservice/documentation/contentmetadataoverview/8
https://developer.opentext.com/imservices/products/contentmetadataservice/apis/contentmetadata

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 41

7.1 Create the Contract type
1. In VS Code, switch to the Explorer view.

2. From the contract_approval application root folder, expand the otresources (model) folder. You
can see the previously created approval trait and contract_approval namespace models.

3. Right-click the otresources (model) folder and select OpenText: New Model to create a new
type.

Note

There are different methods to create models. This is the third method. To

understand the other methods to create models, see Create the Contract Approval

namespace and Create the Approval trait.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 42

4. From the list, select New Type.

5. In the input box, type contract for the (file) name of the type and press Enter.

The value for the Category property is required and because the model is created directly in the
file system (that is, it has already been saved), an error message is displayed for not selecting
one of the allowed values.

Note

Validation errors for saved models are displayed under the PROBLEMS tab until the

issues are resolved. To open the PROBLEMS tab, select View > Problems.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 43

6. Fill the Contract type properties using the following details:

Field Value

Namespace The namespace to which the type belongs.

Select the contract_approval namespace.

Note

OpenText Thrust Studio dynamically updates the

different model reference lists. For a type, the lists of

available namespaces, traits and parent types are

dynamically updated based on the namespaces, traits

and types that exist in the project.

Display name The display name is the user-friendly name for the type. This does not have to be
unique, and it is automatically populated based on the previously chosen type
name (the model file name).

Leave the value to be Contract.

Name The technical name for the type. This name must be unique within the context of
the tenant and selected namespace. It is automatically populated based on the
previously chosen type name (the model file name).

Leave the value to be contract.

Category The category to which the type belongs. It can be a file, folder, object or relation.

Select the file category.

Parent The parent type for the type you are creating.

The Contract type does not have a parent type as it is the base type for contracts.

Description Contract Type

Attributes The attributes list defines the different attributes of the type.

For more information about attribute properties, see Create the Approval trait.

You will add the attributes for the Contract type in step 7.

Required Traits The required traits list defines the different mandatory traits for the type.

The following are the required trait properties:

• Instance name: The name of the required trait. This must be unique across the
type’s required traits. In this tutorial, the required traits are all Approval traits
and the instance name will represent the type of approval.

• Trait name: The unique key (trait name + namespace) representing the
selected trait. In this tutorial, all required traits will be approval
(contract_approval) traits.

You will add the required traits for the Contract type in step 9.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 44

7. In the Attributes list, click the Add button to add the different attributes.

The following table describes each attribute and the property values to assign:

Attribute
description

Display
name

Name Data
type

Default
value

Size Boolean
properties

The email
address of the
person
requesting the
approval of the
contract

Requester

email

requester_email string 256 required,
searchable,
sortable

The current
(approval) status
of the contract

Status status string 32 searchable,
sortable

The (monetary)
value of the
contract

Value value integer required,
searchable,
sortable

The risk
classification of
the contract in
context of the
personal data it
contains

Risk

classific

ation

risk_classification integer searchable,
sortable

The personal
data related
terms that were
found in the
contract

Extracted

terms

extracted_terms string 256 repeating

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 45

8. Select the Required traits tab and click the Add button to add the required traits.

The following table describes each required trait and the property values to assign:

Required trait Instance name Trait Name

The automatic (by the system) approval, which is
always required

Automatic

Approval
approval (contract_approval)

The approval by the Line Manager, which is only
required when the contract value is above 1000

Line Manager

Approval
approval (contract_approval)

The approval by the Risk Manager, which is only
required when the risk classification is above 3. For
example, 4: HIGH or 5: VERY HIGH.

Risk Manager

Approval
approval (contract_approval)

9. Save and close the Contract type model.

Note

Since you correctly filled the model properties, there no longer are validation errors

under the PROBLEMS tab.

10. The model explorer displays the new contract (contract_approval) type under Types. The
model explorer shows the different models according to their unique key, which in context of a
type is the combination of the namespace and name properties.

Next step:

Create the Loan Contract type.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 46

7.2 Create the Loan Contract type
1. In VS Code, create a new type model using any of the three model creation methods explained in

the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type loan_contract for the (file) name of the type.

3. Fill the Loan Contract type properties using the following details:

Field Value

Namespace Select the contract_approval namespace.

Display name Loan Contract

Name loan_contract

Category To allow subtyping the Contract type, and thus inheriting all its attributes and
required traits, the Loan Contract type must be of the file category.

Select the file category.

Parent The parent type for the type you are creating.

Select the contract (contract_approval) type.

Note

The contract (contract_approval) parent type is only

available to be selected from the Parent list when file is

selected as category.

Description Loan Contract Type

Attributes See Attributes.

Required Traits See Required Traits.

Attributes:

Attribute
description

Display name Name Data
type

Default
value

Boolean
properties

The total count of
monthly payments
required/chosen to
reimburse the loan
contract value

Monthly

installments
monthly_installments integer 12 required

The yearly income,
which will be used
together with the
monthly payments and
the loan contract value
to determine solvency
of the customer

Yearly

income
yearly_income integer required

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 47

Required traits:

Required trait description Instance name Trait name

The automated approval step checks if the
customer is solvent by checking the monthly cost.
The monthly cost must not exceed 25% of the
monthly income (calculated from the loan contract
cost, the total count of monthly payments and the
yearly income).

Solvency Check approval (contract_approval)

4. Save and close the Loan Contract type model. The model explorer displays the new
loan_contract (contract_approval) type under Types.

Next step:

Create the Customer type.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 48

7.3 Create the Customer type
1. In VS Code, create a new type model using any of the three model creation methods explained in

the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type customer for the (file) name of the type.

3. Fill the Customer type properties using the following details:

Field Value

Namespace Select the contract_approval namespace.

Display name Customer

Name customer

Category Select the folder category.

Parent The Customer type does not have a parent type.

Description Customer Type

Attributes See Attributes.

Attributes:

Attribute description
Display
name

Name Data
type

Default
value

Size Boolean
properties

The email address of the
customer

Customer

email

customer_email string 256 required,
searchable,
sortable

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 49

4. Save and close the Customer type model. The model explorer displays the new customer
(contract_approval) type under Types.

Next exercise module:

Create (user) groups.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 50

8 [10’] Create (user) groups

Learn how to:

• Create group models

• Add subgroups

After deploying the application into a tenant, the deployed groups can be populated with users to

allow managing role-based behavior and security (through ACLs).

The following user groups will be created in this exercise module:

User group User privilege

administrators
Has full access on all contracts created within the application to allow
administering them.

line_managers Can approve contracts as line manager.

risk_managers Can approve contracts as risk manager.

contract_approval_users
Regular user of the Contract Approval application. Will not have
administrator access or be allowed to approve contracts.

8.1 Create the administrators group
1. In VS Code, create a new group model using any of the three model creation methods explained

in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type administrators for the (file) name of the group.

3. Fill the administrator group properties using the following details:

Field Value

Group name

The technical name for the group. This name must be unique within the
context of the tenant. It is automatically populated based on the
previously chosen group name (the model file name).

Leave the value to be administrators.

Description
Group containing the administrators for the

Contract Approval application

Groups The administrators group has no (sub) groups.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 51

4. Save and close the administrators group model. The model explorer displays the new

administrators group under Groups.

Next step:

Create the line_managers group.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 52

8.2 Create the line_managers group
1. In VS Code, create a new group model using any of the three model creation methods explained

in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type line_managers for the (file) name of the group.

3. Fill the line_managers group properties using the following details:

Field Value

Group name line_managers

Description
Group containing the users that have the Line

Manager role

Groups The line_managers group has no (sub) groups.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 53

4. Save and close the line_managers group model. The model explorer displays the new
line_managers group under Groups.

Next step:

Create the risk_managers group.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 54

8.3 Create the risk_managers group
1. In VS Code, create a new group model using any of the three model creation methods explained

in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type risk_managers for the (file) name of the group.

3. Fill the risk_managers group properties using the following details:

Field Value

Group name risk_managers

Description
Group containing the users that have the Risk

Manager role

Groups The risk_managers group has no (sub) groups.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 55

4. Save and close the risk_managers group model. The model explorer displays the new
risk_managers group under Groups.

Next step:

Create the contract_approval_users group.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 56

8.4 Create the contract_approval_users group
1. In VS Code, create a new group model using any of the three model creation methods explained

in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type contract_approval_users for the (file) name of the group.

3. Fill the contract_approval_users group properties using the following details:

Field Value

Group name contract_approval_users

Description
Group containing the users that are allowed to

use the Contract Approval application

Groups
Select both the line_managers and risk_managers groups using the
in the Groups list.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 57

4. Save and close the contract_approval_users group model. The model explorer displays the new
contract_approval_users group under Groups.

Next exercise module:

Create ACLs.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 58

9 [15’] Create ACLs

Learn how to:

• Create Access Control List (ACL) models that correspond with the different permissions for your
Contract Approval application

• Assign custom permissions

The following ACLs will be created in this exercise module:

ACL Description

created

Applied to newly created contracts, granting the following permissions:

• Full control for the owner or creator of the new contract

• Read access for the regular application users

• Full control for the administrators

pending_approval

Applied to contracts that are waiting to be approved by a line manager,
granting the following permissions:

• Custom read access allowing to change the status and security of the
contract (that is, approve it) for the owner of the contract, removing full
control

• Read access for the regular application users

• Custom read access allowing to change the status and security of the
contract (that is, approve it) for the line managers

• Custom read access allowing to change the status and security of the
contract (that is, approve it) for the risk managers

• Full control for the administrators

completed

Applied to completed (approved, rejected, or expired) contracts, granting
the following permissions:

• Read access for the owner, removing custom approval permissions

• Read access for the regular application users

• Full control for the administrators

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 59

9.1 Create the created ACL
1. In VS Code, create a new ACL model using any of the three model creation methods explained in

the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type created for the (file) name of the ACL.

3. Fill the created ACL properties using the following details:

Field Value

Name created

Description ACL for objects that are in "Created" state

Permissions The permissions list defines the different permissions for each of the
accessors. When creating an ACL, this list already contains one entry
granting the owner full control.

You will add the permissions for the created ACL in the next step.

4. In the Permissions list, click to add the different permissions.

The following table describes each permission and the property values to assign:

Identity alias Group name Permission level

Owner Full control

Group contract_approval_users Read

Group administrators Full control

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 60

5. Save and close the created ACL model.

6. The model explorer displays the new created ACL under Permissions.

Next step:

Create the pending_approval ACL.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 61

9.2 Create the pending_approval ACL
1. In VS Code, create a new ACL model using any of the three model creation methods explained in

the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type pending_approval for the (file) name of the ACL.

3. Fill the pending_approval ACL properties using the following details:

Field Value

Name pending_approval

Description ACL for objects that are in "Pending Approval" state

Permissions You will add the permissions for the pending_approval ACL in the next step.

4. In the Permissions list, click to add the different permissions.

The following table describes each permission and the property values to assign:

Identity alias Group name Permission level

Owner Custom: Browse, Read content, Modify,
Attributes, Edit permissions

Group contract_approval_users Read

Group line_managers Custom: Browse, Read content, Modify,
Attributes, Edit permissions

Group risk_managers Custom: Browse, Read content, Modify,
Attributes, Edit permissions

Group administrators Full control

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 62

5. Save and close the pending_approval ACL model. The model explorer displays the new
pending_approval ACL under Permissions.

Next step:

Create the completed ACL.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 63

9.3 Create the completed ACL
1. In VS Code, create a new ACL model using any of the three model creation methods explained in

the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type completed for the (file) name of the ACL.

3. Fill the completed ACL properties using the following details:

Field Value

Name completed

Description ACL for objects that are completed/finished

(i.e., in "Approved", "Rejected" or "Expired"

state)

Permissions You will add the permissions for the completed ACL in the next step.

4. In the Permissions list, click the Add button to add the different permissions.

The following table describes each permission and the property values to assign:

Identity alias Group name Permission level

Owner Read

Group contract_approval_users Read

Group administrators Full control

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 64

5. Save and close the completed ACL model. The model explorer displays the new completed ACL
under Permissions.

Next exercise module:

Create a decision table.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 65

10 [25’] Create a decision table

Learn how to:

• Create a decision table model

• Define input and output variables

• Determine the right hit policy for the output variables

A decision table allows configuring business rules to be used when building the application logic.

These configured business rules can be consumed directly from the application code or from a

workflow.

The following decision table will be created in this exercise module:

Decision table Description

Contract Approvals

Defines the business logic to determine the necessary approvals for a given
contract.

Depending on the following criteria, the decision table decides the required
approvals for the contract:

• Loan contract: An automated solvency checks to ensure the loan applicant can
pay back the loan according to the agreed conditions.

• Standard contract (that is, not a loan contract) and its value is over 1000: A
manual approval from line manager.

• Loan contract and its value is over 5000: A manual approval from the line
manager. The loan contract value requiring line manager approval is higher
because there is already an automated solvency check for loan contracts.

• Contract risk level is higher than 3 (medium risk): A manual approval from risk
manager.

For more information on Decision Service decision tables, see the Decision Service Reference Guide,
the Decision Table Modeler Reference Guide, or the Decision Service API Reference.

https://developer.opentext.com/imservices/products/decisionservice/documentation/decisionservicereferenceguide/1
https://developer.opentext.com/imservices/products/decisionservice/documentation/decisiontablemodelerreferenceguide/1
https://developer.opentext.com/imservices/products/decisionservice/apis/decision

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 66

10.1 Create the Required Approvals decision table
1. In VS Code, create a new decision table model using any of the three model creation methods

explained in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type required_approvals for the (file) name of the decision table.

3. Fill the created decision table properties using the following details:

Field Value

Namespace Select the contract_approval namespace.

Display name Required Approvals

Name required_approvals

Hit policy The hit policy provides instructions on how the business rules in the
decision table must be executed, evaluated, and matched.

Following are the options in the Hit policy list:
Single hit policies

• First: Multiple (overlapping) rules can match, with different output
entries. The first hit by rule order is returned (and evaluation can
halt).

• Any: There can be an overlap, but all the matching rules show equal
output entries for each output, so any match can be used. If the
output entries are not equal, the hit policy is incorrect, and the result
is undefined.

• Unique: No overlap is possible, and all rules are disjoint. Only a
single rule can be matched.

• Priority: Multiple rules can match, with different output entries. This
policy returns the matching rule with the highest output priority.
Output priorities are specified in the ordered list of allowed output
values, in decreasing order of priority. Priorities are independent from
the rule order.

Multiple hit policies

• Rule Order: Returns all hits in rule order.

• Output Order: Returns all hits in decreasing output priority order.
Output priorities are specified in the ordered list of allowed output
values in decreasing order of priority. Priorities are independent from
the rule order.

• Collect: Returns all hits in arbitrary order.

• Collect (Sum): Returns the sum of the values of all hits.

• Collect (Min): Returns the smallest value of all hits.

• Collect (Max): Returns the largest value of all hits.

• Collect (Count): Returns the number of hits.

By default, the “First” hit policy is selected.

Select the Rule Order hit policy to instruct the Decision Service to collect
and return the output (required approval) of all business rules it hits in the
same order as defined in the decision table.

Description Decision table to determine the required

approval steps for the contract

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 67

4. To configure the New input column, in the decision table, from the New Input column, click the
Edit Action button and select Edit.

5. Fill the Edit input column dialog box using the following details:

Field Value

Column label The column label is the label that is shown at the top of the input column
in the decision table.

Enter Contract Type for the column label.

Variable name The variable name is the name of the input variable.

Enter contract_type for the variable name.

Variable type The variable type is the data type of the input variable. The data type can
be string, number, boolean, date, dateTime, json, duration, or collection.

Select the string variable type.

Allowed values (optional) The allowed values is the optional ordered list (from highest to lowest
priority) of the different possible/allowed values for the input variable.

Add the following two allowed values by typing them in and clicking :

• ca_contract

• ca_loan_contract

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 68

6. Click Submit to confirm the input column properties.

7. To create the second input variable, in the decision table, from the first column, click the Add

Action button and select Add new input variable.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 69

8. Fill the New input column dialog box using the following details:

Field Value

Column label Contract Value

Variable name contract_value

Variable type Select the number variable type.

Allowed values (optional) Allowed values list has no entries.

9. Click Submit to confirm the input column properties.

10. To create the third input variable, from the decision table first column, click the Add Action button

 and select Add new input variable.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 70

11. In the New input column dialog box, fill the input column properties for the new input variable
using the following details:

Field Value

Column label Risk Level

Variable name risk_level

Variable type Select the number variable type.

Allowed values (optional)
• 1

• 2

• 3

• 4

• 5

12. Click Submit to confirm the input column properties.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 71

13. In the decision table, scroll and locate the New Output column and click the Edit Action button
 and select Edit to configure the output column.

14. Fill the Edit output column dialog box properties using the following details:

Field Value

Column label Required Approval

Variable name required_approval

Variable type Select the string variable type.

Allowed values (optional)
• line_managers

• risk_managers

• solvency_check

15. Click Submit to confirm the output column properties.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 72

16. Add three more rules to the decision table. To do this, from the first column, click the Add Action

button and select Add new rule three times.

17. Fill all four rules according to the following table:

Note

Selecting a value of “-“ will set the corresponding operator to “--NA--” as there is

no value to perform a comparison operation on.

 Contract Type Contract value Risk Level Required Approval

Rules Operator Value Operator Value Operator Value Value

1 == ca_loan_contract -- NA -- - -- NA -- - solvency_check

2 == ca_contract > 1000 -- NA -- - line_managers

3 == ca_loan_contract > 5000 -- NA -- - line_managers

4 -- NA -- - -- NA -- - > 3 risk_managers

18. Save and close the Required Approvals decision table model.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 73

19. The model explorer displays the new required_approvals (contract_approval) decision table
under Decision Tables. The model explorer shows the different models according to their unique
key, which in context of a decision table is the combination of the namespace and name
properties.

Next exercise module:

Create workflows.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 74

11 [140’] Create workflows

Learn how to:

• Create a workflow model

• Perform different types of REST API calls in a workflow

• Use a decision table in a workflow

• Use another workflow in a workflow

• Use JavaScript code in a workflow

• Define a user/manual task in a workflow

• Send an email from a workflow

• Define workflow execution paths (decide which paths to activate/follow, parallel paths, joining
execution paths)

A workflow model represents an executable (business) process model from which process instances

can be created. The executable process model is stored as BPMN 2.0 encoded JSON.

The following workflows will be created in this exercise module:

Workflow Description

Solvency Check

The Solvency Check workflow performs the automated solvency check for loan
contracts. It determines whether the requester has enough cash flow to pay back the
loan contract based on the yearly income, monthly payments, and contract value.

Manager Approval

The Manager Approval workflow orchestrates the manual approval of a contract by a
user that belongs to a specific manager group. In the context of the Contract Approval
application this is either the line managers group or the risk managers group.

Contract Approval

The Contract Approval workflow represents the overall business process of approving
a contract and is the main workflow for the Contract Approval application. As such, it
calls the decision table and the other workflows. It consists of automated and manual
approval tasks and not all approval tasks are always required. They are conditional,
based on the rules defined in the decision table. At the end an email is sent to inform
the requester about the outcome of the approval process.

For more information on Workflow Service process models and process instances, see the Workflow
Service product documentation, the Workflow Modeler product documentation, or the Workflow
Service API reference.

https://developer.opentext.com/imservices/products/workflowservice/documentation/workflowserviceoverview/1
https://developer.opentext.com/imservices/products/workflowservice/documentation/workflowserviceoverview/1
https://developer.opentext.com/imservices/products/workflowservice/documentation/workflowmodeleroverview/1
https://developer.opentext.com/imservices/products/workflowservice/apis/workflow
https://developer.opentext.com/imservices/products/workflowservice/apis/workflow

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 75

11.1 Create the Solvency Check workflow
For convenience, the creation of the Solvency Check workflow is split into several sub chapters:

• Create the workflow model

• Understand the workflow editor user interface

• Set the workflow attributes

• Build the process definition

11.1.1 Create the workflow model
1. In VS Code, create a new workflow model using any of the three model creation methods

explained in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type solvency_check for the (file) name of the workflow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 76

11.1.2 Understand the workflow editor user interface

1. In the workflow model editor, click the Menu button to expand the palette.

Note

The workflow model editor is the most elaborate editor of the OpenText Thrust

Studio extension pack. It is intended to build entire business process definitions in all

its complexity.

2. Click the in the workflow model editor to expand the attribute bar.

Tip

Use the Toggle side panels button to expand or collapse both side panes.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 77

The following image illustrates the different user interface components of the workflow editor:

The following table explains the workflow editor user interface components from the preceding

illustration:

Number Component Description

1 Menu bar Contains buttons for the generic capabilities like copy, paste, delete, align, zoom,
help, and other buttons.

2 Palette Contains the different workflow elements which you can drag and drop on the
canvas to build the workflow model.

3 Canvas Area to build or draw the workflow model.

4 Attribute bar Displays the attributes of the currently selected element.

For example, in the preceding illustration, the canvas is selected and the attributes
for the canvas are displayed.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 78

11.1.3 Set the workflow attributes

1. Click the empty space in the canvas (that is, do not select the start event represented by).

2. Expand the attribute bar and fill the workflow attributes using the following details:

Attribute Value

Name The technical name for the workflow. This name must be unique within the context of the
tenant and selected namespace. It is automatically populated based on the previously
chosen workflow name (the model file name).

Leave the value to be solvency_check.

Display name The display name is the user-friendly name for the workflow. It is automatically populated
based on the previously chosen workflow name (the model file name).

Leave the value to be Solvency Check.

Namespace The namespace to which this workflow belongs.

Select the contract_approval namespace as the namespace.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 79

Note

When building workflows, only those attributes that are relevant in context of the

tutorial are explained. For more information on the different attributes of the different

workflow elements, see Workflow Modeler product documentation.

https://developer.opentext.com/imservices/products/workflowservice/documentation/workflowmodeleroverview/1

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 80

11.1.4 Build the process definition

1. Select the Start Event that is already on the canvas.

Note

A start event indicates where a process begins. The type of start event defines how

the process starts. The (standard) start event is used when a process instance is

started through an API call (that is, there is no specific trigger).

2. Fill the start event attributes using the following details:

Attribute Value

Display name Enter Start

3. In the palette, find Activities > Script task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 81

Note

The script task is used to execute JavaScript scripts. Script tasks are mainly used to

perform simple calculations or operations.

4. Drag and drop the Script task to the canvas next to the Start event.

5. Fill the Script task attributes using the following details:

Attribute Value

Display name Calculate solvency

Script Script that executes when the task executes.

This task sets the solvent boolean (process) execution variable based on whether the
monthlyBudget is larger or equal to the monthlyPayments.

Enter the following script:

const contractDetails =

JSON.parse(execution.getVariable("contract"));

const monthlyPayments = contractDetails.properties.value /

contractDetails.properties.monthly_installments;

const monthlyBudget =

contractDetails.properties.yearly_income / 12 / 4;

execution.setVariable("solvent", monthlyBudget >=

monthlyPayments);

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 82

6. Select the Start event and drag the sequence flow (arrow connector) to the Calculate solvency
script task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 83

7. In the palette, find Activities > Http task.

Note

The HTTP task allows to submit and store the result of an HTTP call.

8. Drag and drop the Http task from the palette to the canvas next to the Calculate solvency
script task.

9. Fill the Http task attributes using the following details:

Attribute Value

Display name Update Solvency Check trait

Authentication How to authenticate with the REST API.

For the Http tasks in this workflow, you will use the authentication credentials of the
user performing the task.

Select Use current authentication token and click Save to confirm.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 84

Attribute Value

Request method The request method to use in the HTTP call: GET, POST, PUT, DELETE or PATCH.

This task updates the solvency check trait of the given contract, so this implies using
the PATCH method.

Select the PATCH request method.

Request URL The request URL of the HTTP call. The request URL can contain expressions, such as
${some_variable}.

To perform the request against the correct API base URL and to ensure updating the
contract that was passed to the workflow through the contract_id variable, the request
URL includes ${base_url} and ${contract_id}.

Enter the following request URL:

${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers The line-separated HTTP request headers.

Enter the following request headers:

Content-Type: application/json

Request body The request body to send. For example, a JSON file. Like the request URL, the
request body can also contain expressions.

This task sets the is_required, has_been_granted, approver, approver_role, and
approval_date properties for the Solvency Check ca_approval trait of the contract.

Enter the following request body:
{

 "traits": {

 "ca_approval": {

 "Solvency Check": {

 "is_required": true,

 "has_been_granted": ${solvent},

 "approver": "SYSTEM",

 "approver_role": "Solvency Check",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

Response
variable name

The variable name in which the HTTP response is stored.

Enter the following response variable name:

contract

Save response as
JSON

Whether the response variable is stored as a JSON variable instead of a string.

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 85

10. Select the Calculate solvency script task and drag a sequence flow to the Update Solvency
Check trait http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 86

11. Select the Update Solvency Check trait http task and drag and drop an End event next to it.

12. Select the End event.

Note

An end event signifies the end of a path in a process or sub-process. When the

process execution arrives at an end event, a result is always thrown. The type of

end event defines the type of result that is thrown. The (standard) end event means

that an unspecified result is thrown upon reaching it. As such, the business process

engine will not perform anything besides ending the current path of execution.

13. Fill the End event attributes using the following details:

Attribute Value

Display name End

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 87

14. In the palette, find Artifacts > Text annotation.

Note

The text annotation allows you to describe the business process and flow objects in

more detail. Add annotations to make your BPMN process more readable and

further increase understanding of your process.

15. Drag and drop the Text annotation to the canvas under the Start event.

16. Double-click the Text annotation on the canvas to edit it inline.

17. Set the following text for the text annotation:

Text

Input parameters:

base_url

contract_id

contract

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 88

18. Resize the text annotation so that the text displays correctly and fits the square brackets.

19. Drag and drop another Text annotation from the palette to the canvas under the End event.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 89

20. Double-click the Text annotation on the canvas to edit it inline and set the following text for the
text annotation:

Text

Output parameters:

solvent

21. Resize the Text annotation so that the text displays correctly and fits the square brackets.

22. Save and close the Solvency Check workflow model.

23. The model explorer displays the new solvency_check (contract_approval) workflow under
Workflows. The model explorer shows the different models according to their unique key, which
in context of a workflow is the combination of the namespace and name attributes.

Next step:

Create the Manager Approval workflow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 90

11.2 Create the Manager Approval workflow
For convenience, the creation of the Manager Approval workflow is split into sub chapters:

• Create the workflow model

• Set the workflow attributes

• Build the process definition

11.2.1 Create the workflow model
1. In VS Code, create a new workflow model using any of the three model creation methods

explained in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type manager_approval for the (file) name of the workflow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 91

11.2.2 Set the workflow attributes
1. Click the empty space in the canvas (that is, do not select the start event).

2. Expand the attribute bar and fill the workflow attributes using the following details:

Attribute Value

Name manager_approval

Display name Manager Approval

Namespace Select the contract_approval namespace.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 92

11.2.3 Build the process definition
1. Select the Start event that is already on the canvas.

2. Fill the start event attributes using the following details:

Attribute Value

Display name Start

3. Drag and drop an Http task to the canvas next to the Start event.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 93

4. Fill the Http task attributes using the following details:

Attribute Value

Display name Update Manager Approval trait

Authentication Select Use current authentication token.

Request method Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

Request body This task sets the is_required property to true for the contract approval trait specified
by ${approval_role} Approval (the concatenation of the approver_role process input
parameter and “ Approved”).

Enter the following request body:

{

 "traits": {

 "ca_approval": {

 "${approver_role} Approval": {

 "is_required": true

 }

 }

 }

}

Response
variable name

contract

Save response as
JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 94

5. Select the Start event and drag a sequence flow to the Update Manager Approval trait http
task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 95

6. In the palette, find Activities > User task.

Note

The user task is a typical workflow task where a user performs the task with the

assistance of a software application. It is scheduled through a task list manager. In a

workflow, user tasks are the primary way to interact with humans within a process.

After the execution reaches such a task, a user is required to perform an action. As

an outcome of the action, it is possible to create and update variables to use in other

tasks or to control the flow of the process. Each task can be assigned to one or

more users and shared with any number of groups. A task can optionally have a due

date.

7. Drag and drop the User task to the canvas next to the Update Manager Approval trait http
task.

8. Fill the User task attributes using the following details:

Attribute Value

Display name In the manager_approval workflow, the display name of the manual approval task
which signals the type of approval (that is, who is doing the approval, the line manager
or the risk manager) is computed by concatenating the approver_role process input
parameter and “ Approved”.

Enter the following display name:

${approver_role} Approval

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 96

Attribute Value

Delivery options Complete the user task behavior configuration using the following options:

• Task type: The type of user task

• Assignments: How the user task gets assigned

• Outcomes: What to pass on (in a process variable) as result of the user action

This user task is an approval task to assign to one of the members of the approver group
(that is, line managers or risk managers) which is passed as the approver_group
process input parameter. The two possible user task outcomes are approval or rejection
of the contract.

Set the Task type to Approval.

Under the Assignments tab, click the Add button and enter the following for the
Candidate Groups:

${approver_group}

Select the Outcomes tab and change the Customized value entries to approved and

rejected, set the Task outcome response variable name to approvalStatus,

and click Save to confirm the delivery options.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 97

9. Select the Update Manager Approval trait http task and drag a sequence flow to the User
task.

10. Drag and drop another Http task from the palette to the canvas next to the User task.

11. Fill the Http task attributes using the following details:

Attribute Value

Display name Update Manager Approval trait

Authentication Select Use current authentication token.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 98

Attribute Value

Request method Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

Request body This task sets the is_required, has_been_granted, approver, approver_role, and
approval_date properties for the contract approval trait, specified by
${approver_role} Approver.

Enter the following request body:

{

 "traits": {

 "ca_approval": {

 "${approver_role} Approval": {

 "is_required": true,

 "has_been_granted": ${approvalStatus ==

"approved"},

 "approver": "${approver}",

 "approver_role": "${approver_role}",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

Response
variable name

contract

Save response as
JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 99

12. Select the User task and drag a sequence flow to the second Update Manager Approval trait
http task.

13. Select the second Update Manager Approval trait http task and drag and drop an End event
next to it.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 100

14. Fill the end event attributes using the following details:

Attribute Value

Display name End

15. In the palette, find Boundary Events > Timer boundary event.

Note

The timer boundary event acts as a stopwatch and alarm clock. When an execution

arrives at the activity where the boundary event is attached, a timer starts. When the

timer fires (for example, after a specified interval), the activity is interrupted, and the

outgoing sequence flow of the boundary event is followed.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 101

16. Drag and drop the Timer boundary event on top of the User task’s bottom corner that is nearest
to the End event. The User task changes to green to indicate when the timer boundary event
can be released/dropped to be correctly linked.

17. Select the Timer boundary event and fill its attributes using the following details:

Attribute Value

Time duration
(e.g. PT5M)

Specifies how long the timer must run before it is triggered. The ISO 8601 format is used as
required by the BPMN 2.0 specification.

Note

There are three different ways to configure the timer:

• Time cycle: Specifies (ISO 8601 format) a repeating interval for starting
the process periodically or for sending multiple reminders.

• Time date: Specifies a fixed date (ISO 8601 format) when the trigger will
fire.

• Time duration: Specifies (ISO 8601 format) how long the timer must run
before it is fired.

For the timer boundary event, it is required to fill one of the three timer
configuration properties.

The manager approval task must expire (that is, the timer event must fire) after 5 minutes.

Enter the following time duration:

PT5M

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 102

Execution
listeners

Active execution listeners of the activity. Allows configuring an action when the start, take, or
end events occur for the boundary time event.

For the manager approval task, the approvalStatus process variable must be set to expired
when the timer fires.

Configure the Execution listeners as follows:

Click the Add button and select the end event.

Click the Configure listener definition button to configure the action and select Execute
an expression.

In Execute an expression box, enter the following expression:

${execution.setVariable("approvalStatus" , "expired")}

Click the Switch to previous view button to go back and click Save to confirm the
execution listeners.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 103

18. Select the Timer boundary event and drag a sequence flow to the End event.

19. Click the Sequence flow bend-point button to add two bend-points to the sequence flow
between the Timer boundary event and the End event.

Note

Bend-points allow you to change the visual path of a sequence flow to display the

BPMN process more clearly. Add bend-points where needed to make your BPMN

process more readable.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 104

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 105

20. Drag and drop a Text annotation from the palette to the canvas under the start event.

21. Double-click the Text annotation on the canvas to edit it inline.

22. Set the following text for the text annotation:

Text

Input parameters:

base_url

contract_id

contract

approver_role

approver_group

23. Resize the text annotation so that the text displays correctly and fits the square brackets.

24. Drag and drop another Text annotation from the palette to the canvas under the End event.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 106

25. Double-click the Text annotation on the canvas to edit it inline and set the following text for the
text annotation:

Text

Output parameters:

approvalStatus

26. Resize the Text annotation so that the text displays correctly and fits the square brackets.

27. Save and close the Manager Approval workflow model. The model explorer displays the new
manager_approval (contract_approval) workflow under Workflows.

Next step:

Create the Contract Approval workflow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 107

11.3 Create the Contract Approval workflow
For convenience, the creation of the Contract Approval workflow is split into several sub chapters:

• Create the workflow model

• Set the workflow attributes

• Build the process definition

11.3.1 Create the workflow model
1. In VS Code, create a new workflow model using any of the three model creation methods

explained in the following exercises:

• Create the Contract Approval namespace

• Create the Approval trait

• Create the Contract type

2. Type contract_approval for the (file) name of the workflow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 108

11.3.2 Set the workflow attributes
1. Click the empty space in the canvas (that is, do not select the start event).

2. Expand the attribute bar and fill the workflow attributes using the following details:

Attribute Value

Name contract_approval

Display name Contract Approval

Namespace Select the contract_approval namespace.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 109

11.3.3 Build the process definition
1. Select the Start event that is already on the canvas.

2. Fill the Start event attributes using the following details:

Attribute Value

Display name Start

3. Drag and drop an Http task to the canvas next to the Start event.

4. Fill the Http task attributes using the following details:

Attribute Value

Display name Get contract from CMS

Authentication Select Use current authentication token.

Request method This task fetches the contract metadata from CMS, so this implies using the GET
method.

Select the GET request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

Response
variable name

contract

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 110

Attribute Value

Save response as
JSON

Choose to save the response as JSON.

5. Select the Start event and drag a sequence flow to the Get contract from CMS http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 111

6. Drag and drop a second Http task from the palette to the canvas next to the Get contract from
CMS http task.

7. Fill the Http task attributes using the following details:

Attribute Value

Display name Get required approvals

Authentication Select Use current authentication token.

Request method This task calls the Decision Service to execute the decision table that calculates the
required approvals. This implies using the POST method.

Select the POST request method.

Request URL Enter the following request URL to call the Decision Service:

${base_url}/decision/v1/execute

Request headers Content-Type: application/json

Request body This task executes the required_approvals decision table with the contract_type,
contract_value, and risk_level contract property values as input variables.

Enter the following request body:

{

 "decisionKey": "required_approvals",

 "inputVariables": [

 {

 "name": "contract_type",

 "value": "${contract.type}",

 "type": "string"

 },

 {

 "name": "contract_value",

 "value": ${contract.properties.value},

 "type": "integer"

 },

 {

 "name": "risk_level",

 "value": ${contract.properties.risk_classification},

 "type": "integer"

 }

]

}

Response
variable name

required_approvals

Save response
as JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 112

Execution
listeners

Active execution listeners of the activity. Allows configuring an action when the start, take,
or end events occur for the boundary time event.

For the Get required approvals http task the solvency_check_required,
line_manager_approval_required, and risk_manager_approval_required process
variables must be set according to the required_approvals result from the Decision
Service call.

Click the Add button and select the End event.

Click the Configure listener definition button to configure the action and select
Execute a script.

Expand the script input box (for readability) and enter the following script:

let solvencyCheckRequired = false;

let lineManagerApprovalRequired = false;

let riskManagerApprovalRequired = false;

const resultVariables = JSON.parse(

 execution.getVariable("required_approvals")

).resultVariables;

resultVariables.forEach((approval) => {

 switch(approval[0].value) {

 case "solvency_check":

 solvencyCheckRequired = true;

 break;

 case "line_managers":

 lineManagerApprovalRequired = true;

 break;

 case "risk_managers":

 riskManagerApprovalRequired = true;

 break;

 }

});

execution.setVariable("solvency_check_required",

solvencyCheckRequired);

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 113

Attribute Value

execution.setVariable("line_manager_approval_required",

lineManagerApprovalRequired);

execution.setVariable("risk_manager_approval_required",

riskManagerApprovalRequired);

Click the Switch to previous view button to go back and click Save to confirm the
execution listeners.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 114

8. Select the Get contract from CMS http task and drag a sequence flow to the Get required
approvals http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 115

9. Drag and drop a third Http task from the palette to the canvas next to the Get required
approvals http task.

10. Fill the Http task attributes using the following details:

Attribute Value

Display name Set contract status to PENDING APPROVAL

Authentication Select Use current authentication token.

Request method This task sets the value for the status attribute of the given contract, so this implies
using the PATCH method.

Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

Request body This task sets the contract’s status property to PENDING APPROVAL.

Enter the following request body:

{

 "properties": {

 "status": "PENDING APPROVAL"

 }

}

Response
variable name

contract

Save response
as JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 116

11. Select the Get required approvals http task and drag a sequence flow to the Set contract
status to PENDING APPROVAL http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 117

12. Drag and drop a fourth Http task from the palette to the canvas next to the Set contract status
to PENDING APPROVAL http task.

13. Fill the Http task attributes using the following details:

Attribute Value

Display name Set ACL to pending_approval

Authentication Select Use current authentication token.

Request
method

This task sets the ACL of the given contract. Setting the ACL for a file instance requires
calling a separate (acl) file instance endpoint to replace the current ACL resource, which
implies using the PUT method.

Select the PUT request method.

Request URL Enter the following request URL to call the acl endpoint for the given contract:

${base_url}/cms/instances/file/ca_contract/${contract_id}/acl

Request
headers

Content-Type: application/json

Request body This task sets the ACL of the contract by using the pending_approval_acl_id process input
parameter as the id of the ACL to apply.

Enter the following request body:

{

 "id": "${pending_approval_acl_id}"

}

Save response
as JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 118

14. Select the Set contract status to PENDING APPROVAL http task and drag a sequence flow
to the Set ACL to pending_approval http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 119

15. In the palette, find Gateways > Inclusive gateway.

Note

A gateway controls the flow of execution. A gateway is capable of consuming or

generating tokens.

There are four types of gateways:

• Exclusive gateway: Is used to model a decision in the process. When the execution
arrives at this gateway, all outgoing sequence flows are evaluated in the order in which
they are defined. The first sequence flow whose condition evaluates to true is selected for
continuing the process.

• Parallel gateway: Is the most straightforward gateway to introduce concurrency in a
process model. It allows you to fork into multiple paths of execution or join multiple
incoming paths of execution.

• Inclusive gateway: Can be seen as a combination of an exclusive and a parallel gateway.
Like an exclusive gateway, you can define conditions on outgoing sequence flows and
the inclusive gateway will evaluate them. However, the main difference is that like the
parallel gateway, the inclusive gateway can take more than one sequence flow.

• Event gateway: Provides a way to take a decision based on events. Each outgoing
sequence flow of the gateway must be connected to an intermediate catching event.
When process execution reaches an event-based gateway, the gateway acts like a wait
state: execution is suspended. In addition, for each outgoing sequence flow, an event
subscription is created.

In this tutorial you will be using inclusive and exclusive gateways to control the

contract approval flow execution.

16. Drag and drop the Inclusive gateway to the canvas next to the Set ACL to pending_approval
http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 120

17. Select the Set ACL to pending_approval http task and drag a sequence flow to the inclusive
gateway.

18. In the palette, find Structural > Call sub process.

Note

BPMN 2.0 makes a distinction between a regular sub-process, often also called
embedded sub-process, and a called sub process. Both call a sub-process when the
process execution arrives at the activity. The difference is that call sub process
references a process that is external to the process definition, whereas sub-process
is embedded within the original process definition. The main use case for call sub
process is to have a reusable process definition that can be called from multiple
other process definitions.

When process execution arrives at call sub process, a new execution is created that

is a sub-execution of the execution that arrived at call sub process. This sub-

execution is then used to execute the sub-process, potentially creating parallel child

executions within a regular process. The super-execution waits until the sub-process

ends and continues with the original process afterward.

For the contract approval workflow, call sub process will be used to call both the

previously created Solvency Check and Manager Approval workflows as sub-

processes.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 121

19. Drag and drop the Call sub process structural to the canvas below the previously created Http
tasks and Inclusive gateway. Leave enough vertical space to draw sequence flow connectors
from the inclusive gateway and leave enough horizontal space to add a text annotation under the
Start event and Get contract from CMS http task.

20. Fill the call sub process attributes using the following details:

Attribute Value

Display name This call sub process calls the Solvency Check workflow to perform the solvency check.

Enter the following display name:

Check Solvency

Called process
reference

Whether to use the key (that is, the name) or the ID of the deployed process definition to
start the process referenced in the Called process property.

Select the key value for the called process reference.

Called process The name (also known as the key) or ID of the workflow to call.

This call sub process calls the Solvency Check workflow by name to perform the
solvency check.

Enter the following for the called process:

solvency_check

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 122

Attribute Value

Output mapping Optional output parameter map. Allows the mapping of parameters and variables from
the called sub-process to the calling process (that is, the workflow that contains the call
sub process call).

For the Check Solvency call sub process, the solvent process variable of the called
(that is, source) solvency_check workflow must be mapped to a new solvent process
variable of the calling (that is, target) workflow.

Click the Add button and enter solvent for both the Source and Target process

variables.

Click Save to confirm the output mapping.

Inherit variables
in sub process

Whether to inherit the parent process variables in the sub-process.

Choose to inherit the input variables in the sub process.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 123

21. Select the inclusive gateway and drag a sequence flow to the Check Solvency call sub process.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 124

22. Add two bend-points to the new sequence flow.

23. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Flow condition The condition that defines whether the sequence flow is selected from the connected
gateway.

This flow must be selected by the inclusive gateway if an automated solvency check is
required. This information is available from the solvency_check_required process
variable that was set after calling the Decision Service in the Get required approvals http
task.

Enter the following flow condition:

${solvency_check_required}

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 125

24. Drag and drop a second Call sub process structural from the palette to the canvas next to the
Check Solvency call sub process.

25. Fill the call sub process attributes using the following details:

Attribute Value

Display name This call sub process calls the Manager Approval workflow to perform the line manager
approval.

Enter the following display name:

Line Manager Approval

Called process
reference

Select the key value for the called process reference.

Called process manager_approval

Input mapping Optional input parameter map. Allows the mapping of parameters and variables from the
calling process (that is, the workflow that contains the call sub process call) to the called
sub-process.

For the Line Manager Approval call sub process, the values of the approver_role and
approver_group process variables of the called manager_approval sub-process need
to be set.

Click the Add button and enter Line Manager as the source expression (in this

case a literal text value) and approver_role as the target process variable to map it

to in the called sub-process.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 126

Attribute Value

Click the Add button to add a second input parameter and enter line_managers

(literal text value) as the source expression and approver_group as the target

process variable to map it to in the called sub-process.

Click Save to confirm the input mapping.

Output mapping For the Line Manager Approval call sub process, the approvalStatus process variable
of the called (that is, source) manager_approval workflow must be mapped to a new
approvalStatus process variable of the calling (that is, target) workflow.

Click the Add button and enter approvalStatus for both the Source and Target

process variables.

Click Save to confirm the output mapping.

Inherit variables
in sub process

Choose to inherit the input variables in the sub process.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 127

26. Select the inclusive gateway, drag a sequence flow to the Line Manager Approval call sub
process, and add two bend-points to the new sequence flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 128

27. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Flow
condition

This flow must be selected by the inclusive gateway if a line manager approval is required.
This information is available from the line_manager_approval_required process variable
that was set after calling the Decision Service in the Get required approvals http task.

Enter the following flow condition:

${line_manager_approval_required}

28. Drag and drop a third Call sub process structural from the palette to the canvas next to the
Line Manager Approval call sub process.

29. Fill the call sub process attributes using the following details:

Attribute Value

Display name This call sub process calls the Manager Approval workflow to perform the risk manager
approval.

Enter the following display name:

Risk Manager Approval

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 129

Attribute Value

Called process
reference

Select the key value for the called process reference.

Called process manager_approval

Input mapping For the Risk Manager Approval call sub process, the values of the approver_role and
approver_group process variables of the called manager_approval sub-process need
to be set.

Click the Add button and enter Risk Manager (literal text value) as the Source

expression and approver_role as the Target process variable to map it to in the

called sub-process.

Click the Add button to add a second input parameter and enter risk_managers

(literal text value) as the Source expression and approver_group as the Target

process variable to map it to in the called sub-process.

Click Save to confirm the input mapping.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 130

Attribute Value

Output mapping For the Risk Manager Approval call sub process, the approvalStatus process variable
of the called (that is, the Source) manager_approval workflow must be mapped to a new
approvalStatus process variable of the calling (that is the Target) workflow.

Click the Add button and enter approvalStatus for both the Source and Target

process variables.

Click Save to confirm the output mapping.

Inherit variables
in sub process

Choose to inherit the input variables in the sub process.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 131

30. Select the inclusive gateway, drag a sequence flow to the Risk Manager Approval call sub
process, and add two bend-points to the new sequence flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 132

31. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Flow condition This flow must be selected by the inclusive gateway if a risk manager approval is required.
This information is available from the risk_manager_approval_required process variable
that was set after calling the Decision Service in the Get required approvals http task.

Enter the following flow condition:

${risk_manager_approval_required}

32. Drag and drop a fifth Http task from the palette to the canvas under the bottom corner of the
Risk Manager Approval call sub process.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 133

33. Fill the Http task attributes using the following details:

Attribute Value

Display name Set contract status to APPROVED

Authentication Select Use current authentication token.

Request
method

Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request
headers

Content-Type: application/json

Request body This task sets the status property of the contract to APPROVED.

Enter the following request body:

{

 "properties": {

 "status": "APPROVED"

 }

}

Response
variable name

contract

Save response
as JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 134

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 135

34. Select the inclusive gateway, drag a sequence flow to the Set contract status to APPROVED
http task, and add three bend-points to the new sequence flow.

35. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Default flow Whether the sequence flow is the default flow to be selected from the connected gateway.
The default flow gets selected when none of the other connected flows are (that is, none of
the flow conditions of the other flows have been fulfilled).

This flow is the default flow, and it results in setting the contract status directly to
APPROVED when there are no required approvals.

Choose to set this flow as the default flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 136

Note

The default flow displays with an additional mark near the connected gateway:

36. Select the Check Solvency call sub process and drag and drop an Exclusive gateway right
below it.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 137

37. Select the Line Manager Approval call sub process and drag and drop an Exclusive gateway
below it, making sure it is aligned with the Set contract status to APPROVED http task to
ensure readability.

38. Select the Risk Manager Approval call sub process and drag a sequence flow to the second
exclusive gateway (that is, the one below the Line Manager Approval call sub process).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 138

39. Drag and drop a second Inclusive gateway to the canvas between the second exclusive
gateway and the Set contract status to APPROVED http task. Make sure that the new
inclusive gateway is close to the Set contract status to APPROVED http task, so that there is a
maximum amount of space between the exclusive gateway and the inclusive gateway. This
allows adding text to the connecting sequence flow.

40. Select the first exclusive gateway (that is, the one below the Check Solvency call task), drag a
sequence flow to the Inclusive gateway, and add one bend-point to the new sequence flow.

41. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Display name The display name of a sequence flow displays on the canvas and can be filled to improve
readability (to show what the sequence flow stands for).

This sequence flow is selected when the outcome of the Check Solvency call sub process
is that the contract approval requester is solvent, and more specifically that the Solvent
process variable is equal to True.

Enter the following display name:

Solvent

Default flow This flow is the default flow, and it moves the flow forward to the inclusive gateway that
waits for all required approvals (that is, selected/active flows from the first inclusive
gateway) to arrive.

Choose to set this flow as the default flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 139

42. Select the second exclusive gateway (that is, the one below the Line Manager Approval call
task) and drag a sequence flow to the inclusive gateway.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 140

43. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Display name This sequence flow is selected when the outcome of either the Line Manager Approval call
sub process or the Risk Manager Approval call sub process is that the approver has
approved the contract, and more specifically that the approvalStatus process variable is
not equal to rejected or expired.

Enter the following display name:

Approved

Default flow This flow is the default flow, and it moves the flow forward to the inclusive gateway that
waits for all required approvals (that is, selected/active flows from the first inclusive
gateway) to arrive. If both manager approver call activities are selected, the inclusive
gateway requires this flow to be selected for each of them.

Choose to set this flow as the default flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 141

44. Select the second inclusive gateway (that is, the one next to the Set contract status to
APPROVED http task) and drag a sequence flow to the Set contract status to APPROVED
http task.

45. Drag and drop a sixth Http task from the palette to the canvas next to the Set contract status
to APPROVED http task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 142

46. Fill the Http task attributes using the following details:

Attribute Value

Display name Update Automatic Approval trait

Authentication Select Use current authentication token.

Request method Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

Request body This task sets the has_been_granted, approver, approver_role, and approval_date
properties for the Automatic Approval contract approval trait.

Enter the following request body:

{

 "traits": {

 "ca_approval": {

 "Automatic Approval": {

 "has_been_granted": true,

 "approver": "SYSTEM",

 "approver_role": "Automatic Approval",

 "approval_date": "${contract.update_time}"

 }

 }

 }

}

Response
variable name

contract

Save response as
JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 143

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 144

47. Select the Set contract status to APPROVED http task and drag a sequence flow to the
Update Automatic Approval trait http task.

48. In the palette, find Activities > Email task.

Note

The email task sends emails to one or more recipients. It supports normal email

features, such as cc lists, bcc lists, and HTML content.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 145

49. Drag and drop the Email task to the canvas next to the Update Automatic Approval trait http
task.

50. Fill the email task attributes using the following details:

Attribute Value

Display name Send Email on contract status

To The recipient of the email. Specify multiple recipients in a comma-separated list. This can be
an expression.

This task sends the email to the requester of the contract approval.

Enter the following recipient email:

${contract.properties.requester_email}

Subject The subject of the email. This can be an expression.

Enter the following email subject:

Contract Approval Status

Text The text content of the email. This can be an expression.

The email text details the name of the contract and its final status (that is, the result of the
approvals).

Enter the following email text:

Contract: ${contract.name}

Status: ${contract.properties.status}

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 146

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 147

51. Select the Update Automatic Approval trait http task and drag a sequence flow to the Send
Email on contract status email task.

52. Drag and drop a seventh Http task from the palette to the canvas under the Set contract status
to APPROVED http task.

53. Fill the Http task attributes using the following details:

Attribute Value

Display name Set contract status to EXPIRED

Authentication Select Use current authentication token.

Request method Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 148

Attribute Value

Request body This task sets the status property of the contract to EXPIRED.

Enter the following request body:

{

 "properties": {

 "status": "EXPIRED"

 }

}

Response
variable name

contract

Save response as
JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 149

54. Select the second exclusive gateway (that is, the one below the Line Manager Approval call
task), drag a sequence flow to the Set contract status to EXPIRED http task, and add 1 bend-
point to the new sequence flow.

55. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Display name Expired

Flow
condition

This sequence flow is selected when the outcome of either the Line Manager Approval call
sub process or the Risk Manager Approval call sub process is that the approval task has
expired, and more specifically that the approvalStatus process variable is equal to
expired.

Enter the following flow condition:

${approvalStatus == "expired"}

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 150

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 151

56. Drag and drop an eighth Http task from the palette to the canvas under the Set contract status
to EXPIRED http task.

57. Fill the Http task attributes using the following details:

Attribute Value

Display name Set contract status to REJECTED

Authentication Select Use current authentication token.

Request method Select the PATCH request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}

Request headers Content-Type: application/json

Request body This task sets the status property of the contract to REJECTED.

Enter the following request body:

{

 "properties": {

 "status": "REJECTED"

 }

}

Response
variable name

contract

Save response as
JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 152

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 153

58. Select the first exclusive gateway (that is, the one below the Solvency Check call task), drag a
sequence flow to the Set contract status to REJECTED http task, and add 1 bend-point to the
new sequence flow.

59. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Display name Not solvent

Flow
condition

This sequence flow is selected when the outcome of the Check Solvency call sub process
is that the contract approval requester is not solvent, and more specifically that the solvent
process variable is not equal to true.

Enter the following flow condition:

${!solvent}

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 154

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 155

60. Select the second exclusive gateway (that is, the one below the Line Manager Approval call
task), drag a sequence flow to the Set contract status to REJECTED http task, and add 1
bend-point to the new sequence flow.

61. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Display name Rejected

Flow
condition

This sequence flow is selected when the outcome of either the Line Manager Approval call
sub process or the Risk Manager Approval call sub process is that the approval is rejected,
and more specifically that the approvalStatus process variable is equal to rejected.

Enter the following flow condition:

${approvalStatus == "rejected"}

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 156

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 157

62. Select the Set contract status to REJECTED http task, drag a sequence flow to the Send
Email on contract status email task, and add 1 bend-point to the new sequence flow.

63. Select the Set contract status to EXPIRED http task, drag a sequence flow to the Send Email
on contract status email task, and add 1 bend-point to the new sequence flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 158

64. Drag and drop a ninth Http task from the palette to the canvas next to the Send Email on
contract status email task.

65. Fill the Http task attributes using the following details:

Attribute Value

Display name Set ACL to completed

Authentication Select Use current authentication token.

Request
method

Select the PUT request method.

Request URL ${base_url}/cms/instances/file/ca_contract/${contract_id}/acl

Request
headers

Content-Type: application/json

Request body This task sets the ACL of the contract by using the completed_acl_id process input
parameter as the id of the ACL to apply.

Enter the following request body:

{

 "id": "${completed_acl_id}"

}

Save
response as
JSON

Choose to save the response as JSON.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 159

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 160

66. Select the Send Email on contract status email task and drag a sequence flow to the Set
ACL to completed http task.

67. Select the Set ACL to completed http task and drag and drop an Exclusive gateway next to it.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 161

68. Select the third (that is, newly created) exclusive gateway and drag and drop an End event next
to it. Leave enough space between the exclusive gateway and the end event to allow adding text
for the connecting sequence flow.

69. Fill the End event attributes using the following details:

Attribute Value

Display name End

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 162

70. Select the new sequence flow between the third exclusive gateway and the End event and fill
the sequence flow attributes using the following details:

Attribute Value

Display name This sequence flow is selected when the status property of the contract is equal to
APPROVED.

Enter the following display name:

Approved

Default flow Choose to set this flow as the default flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 163

71. In the palette, find End events > Terminate end event.

Note

The terminate end event is mostly used with parallel or inclusive gateways. While a

normal (untyped) end event indicates that a single process sequence ends, the

terminate end event ends the whole process and thereby, ends every activity that

may be running at that time.

For example, in the contract approval workflow, if any of the manager approval tasks

is still pending, the terminate end event results in terminating the sub processes and

corresponding activities. This is required to ensure cleaning up in case of one of the

selected required approvals marking the contract as EXPIRED or REJECTED.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 164

72. Drag and drop the Terminate end event to the canvas under the third exclusive gateway.
Leave enough space between the exclusive gateway and the terminate end event for adding text
to the connecting sequence flow.

73. Fill the Terminate end event attributes using the following details:

Attribute Value

Display name End and cancel pending approvals

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 165

74. Select the third exclusive gateway and drag a sequence flow to the Terminate end event.

75. Select the new sequence flow and fill the sequence flow attributes using the following details:

Attribute Value

Display name Not Approved

Flow
condition

This sequence flow is selected when the status property of the contract is not equal to
APPROVED.

Enter the following flow condition:

${contract.properties.status != "APPROVED"}

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 166

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 167

76. Drag and drop a Text annotation from the palette to the canvas under the start event.

77. Double-click the Text annotation on the canvas to edit it inline.

78. Set the following text for the text annotation:

Text

Input parameters:

base_url

contract_id

pending_approval_acl_id

completed_acl_id

79. Resize the Text annotation so that the text displays correctly and fits the square brackets.

80. Save and close the Contract Approval workflow model.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 168

81. The model explorer displays the new contract_approval (contract_approval) workflow under
Workflows.

Next exercise module:

Deploy an application to the OpenText Thrust Services.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 169

12 [25’] Deploy an application to the

OpenText Thrust Services

Learn how to:

• Deploy an application project (with its models) to the OpenText Thrust Services and get the
application credentials

• Verify that the application is deployed using Admin Center

• Add the redirect URLs for the deployed application using Admin Center

• Add the application users to the deployed groups using Admin Center

12.1 Deploy the Contract Approval application and
get the application credentials

1. Open VS Code and, from the Activity Bar, select the OpenText Thrust Studio view.

2. In the MODELS section, click the More Actions button and select Deploy to Default Tenant
to deploy your application project.

After deployment, the success message is displayed.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 170

The OUTPUT view automatically opens and displays the OT Deployment output.

3. Make note of the Tenant ID (value between '[" and "]') on the first line), the Public Client ID, the
Confidential Client ID, and the Confidential Client secret. You require these values to test the
deployment and run the application.

Note

You can copy the above client credentials into a text file and save it. OpenText

recommends that you store this type of sensitive information in a secure way.

12.2 Verify that the application is deployed
1. Sign in to the developer.opentext.com website.

2. Select the <organization name> <region> combination for your developer organization from the
Console menu.

3. In the Admin Center navigation menu, click Tenants.

https://developer.opentext.com/

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 171

4. Select the tenant to which you deployed the application.

5. In the (tenant) navigation menu, click Apps and confirm the existence of the deployed Contract
Approval app.

Next step:

Add the redirect URL for the application authentication flow.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 172

12.3 Add the redirect URL for the application
authentication flow

To authenticate, users of your Contract Approval application need to sign in using an external (to the

application) login screen as part of the authentication (OAuth) flow. This means that the web browser

in which you open the Contract Approval application will first be redirected to a login screen, and after

it is authenticated, it will be redirected back to your Contract Approval application (which you will

configure to run on https://localhost:4000). This redirect URL needs to be added at the organization

level to the deployed application’s public service client configuration (represented by the Public Client

ID) for the authentication to work.

1. Sign in to developer.opentext.com.

2. Select the <organization name> <region> combination for your developer organization from the
Console menu.

3. In the Admin Center navigation menu, click Apps.

4. Click on the Contract Approval app tile.

https://localhost:4000/
https://developer.opentext.com/

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 173

5. In the Contract Approval app navigation menu, click Service clients.

6. Hover over the Public client entry in the client list and click the More button select Manage
redirect URLs.

7. In the Redirect URLs screen, click Add URL.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 174

8. In the URL 1 box, enter https://localhost:4000 and click Save.

Next step:

Add the application users to the application groups.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 175

12.4 Add the application users to the application
groups

1. Sign in to developer.opentext.com.

2. Select the <organization name> <region> combination for your developer organization from the
Console menu.

3. In the Admin Center navigation menu, navigate to Tenants and select the tenant to which you
deployed the application.

4. In the (tenant) navigation menu, go to Apps and click on the Contract Approval app tile.

https://developer.opentext.com/

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 176

5. In the (tenant app) navigation menu, go to User management > Users.

The user used for subscribing to the trial or developer plan is the only user listed in the Users list.

6. Click Add and select Add user to add two additional users (email accounts) to represent the line
manager and risk manager as approvers.

7. From the Add user dialog box, in the User name or email box, to represent a role specific email
address, enter the email address used for subscribing to the trial or developer plan, but add a “+”
and the role (“linemgr” or “riskmgr”) right before the “@”.

Using a “+” in an email address is very useful as it allows differentiating recipients/email
addresses while delivering them all to the same email address (the original address without the
“+” and text before “@”).

So, for example, if the email address used to subscribe to the trial or developer plan is

myname@somedomain.com, applying the approach of adding a “+” with the role results in the

following two emails to represent the line manager and risk manager:

• Line manager: myname+linemgr@somedomain.com

• Risk manager: myname+riskmgr@somedomain.com

Note

Only two new users need to be added. For the regular user (that is, the approval

requester), the email address used for subscribing to the trial or developer plan will

be used.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 177

8. Go to your email client for the developer trial subscription email account and locate the two emails

with the Subject: Register your new OpenText IMS account.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 178

9. For each email, click Complete Registration and fill the OpenText Cloud Platform registration
form using the following details:

Field Value

First name Thrust Services Tutorial

Last name Use the application role as value for the last name field.

Depending on the email address in the Email field of the form, fill the
correct application role, that is:

Line Manager or Risk Manager

Email The email address for the specific approver role and it appears
automatically.

Password Specify the password.

Confirm password Confirm the password.

10. Click I accept to accept the terms and proceed with the registration of the two new users.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 179

11. Go back to Admin Center and refresh the User management > Users page to confirm that the
status of the two newly added users is Enabled.

12. In the (tenant app) navigation menu, select User management > Groups.

13. From Groups, select line_managers.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 180

14. In the Members section, click Add > Add user to add the line manager approver as a group
member.

15. In the User name or mail box, enter the line manager approver email and click Add.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 181

16. Click (back arrow icon) to go back to the User management > Groups list.

17. Click the risk_managers group.

18. In the Members section, click Add > Add user to add the risk manager approver as a group
member.

19. Enter the risk manager approver email and click Add.

20. Click (back arrow icon) to go back to the User management > Groups list.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 182

21. Click the contract_approval_users group.

22. In the Members section, click Add > Add user to add the regular user (that is, the user
requesting the contract approval and not having line manager or risk manager approval
privileges).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 183

23. Enter the regular user email (the email address used for subscribing to the trial or developer
plan) and click Add.

Next exercise module:

Work with the OpenText Thrust Services APIs.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 184

13 [25’] Work with the OpenText Thrust

Services APIs

Learn how to:

• Download and install Postman

• Download the finished Contract Approval App from GitHub

• Import the Postman collection and environment

• Verify the deployment of the different models using the OpenText Thrust Services APIs through
Postman

13.1 Download and install Postman
1. Download and install postman from https://www.postman.com/downloads.

2. Sign in or create an account to allow using collections.

Next step:

Download the Contract Approval application.

https://www.postman.com/downloads

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 185

13.2 Download the Contract Approval application
1. Go to web address https://github.com/opentext/demo-contract-approval-app and download the

Contract Approval App (demo-contract-approval-app) from GitHub.

Note

The latest version of the Contract Approval App is available from GitHub. For this

tutorial, you will use “Download ZIP” to download the application. To ensure having

the latest version of the Contract Approval App, you can download the ZIP at any

time, but you can also choose to clone the repository and regularly perform a git pull.

https://github.com/opentext/demo-contract-approval-app

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 186

2. Extract the demo-contract-approval-app-master folder from the downloaded ZIP file to your file
system (for example, in the same folder as the tutorial project).

Next step:

Import the Postman collection and environment into Postman.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 187

13.3 Import the Postman collection and environment
into Postman

1. Open Postman.

2. Select Collections from the sidebar and click Import.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 188

3. From the import dialog box, click to select files and navigate to the previously extracted demo-
contract-approval-app-master folder.

4. In the demo-contract-approval-app-master folder, navigate to the /postman folder and select
the OpenText Thrust Services Tutorial.postman_collection.json collection file.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 189

5. Click Open to import the OpenText Thrust Services Tutorial collection into Postman.

6. Select Environments from the Postman sidebar and click Import.

7. From the import dialog box, click to select files and navigate to the previously extracted demo-
contract-approval-app-master folder.

8. In the demo-contract-approval-app-master folder, navigate to the /postman folder and select
the OpenText Thrust Services Tutorial.postman_environment.json environment file.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 190

9. Click Open to import the OpenText Thrust Services Tutorial environment into Postman.

Next step:

Verify the deployment of the application models using the OpenText Thrust Services APIs.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 191

13.4 Verify the deployment of the application models
using the OpenText Thrust Services APIs

1. Select Environments from the Postman sidebar and In Postman and set the OpenText Thrust
Services Tutorial environment as the active environment.

2. Select the OpenText Thrust Services Tutorial to fill the environment variables.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 192

3. Use the following details to fill the OpenText Thrust Services Tutorial environment’s environment
variables with the values that correspond with the deployed application:

Field Value

root_domain Replace the <region> placeholder in <region>.api.opentext.com with the region of your
developer subscription. For this tutorial we use us as the region, but if your developer
subscription (trial or other) is in a different region, you must use that region.

tenant_id Use the tenant id you saved after deploying the application project (that is, the text value
between '[" and "]') on the first line).

client_id Use the Confidential Client ID you saved after deploying the application project.

client_secret Use the Confidential Client Secret you saved after deploying the application project.

Note

Make sure to fill both the Initial value and Current value columns for each of the

environment variables (the ones that are not mentioned, you must leave as is). The

initial value can be used if you want to reset the environment variables to their initial

value, and the current value is the environment variable value that will be used when

performing API calls.

4. Click Save and close the OpenText Thrust Services Tutorial environment configuration screen.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 193

Note

In this context you are using the confidential client ID and confidential client secret.
This is typically the type of credentials you would use to authenticate from a back-
end service (that is, running on a server, and not an end user device).

Later in the tutorial (when looking at the application code), you will be using a

different authentication mechanism that uses the public client ID to authenticate

through a trusted (OpenText Cloud Platform) login web page so that the application,

which is front-end code (that is, running on the end user device, in the browser), can

authenticate against the OpenText Thrust Services APIs in a secure manner.

5. Select Collections from the Postman sidebar and expand the OpenText Thrust Services
Tutorial Postman collection.

You can see five folders representing the different OpenText Thrust Services APIs (Content
Metadata Service, Content Storage Service, Decision Service, Risk Guard Service, and
Workflow Service) for which the collection has example requests.

There is also a Get access token with client credentials POST request in the root of the
collection, as this is the single request you will be using to get an access token to use for all other
requests. After you run this request successfully, the access_token environment variable gets
populated and can be used in every other request.

Note

If the access_token expires, the API requests will start failing with the token not valid

error. To resolve this error, re-run the Get access token with client credentials

request.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 194

6. Run the Get access token with client credentials POST request to get the token.

Make sure you have selected the (previously configured) OpenText Thrust Services Tutorial
environment, open the Get access token with client credentials request and click Send.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 195

7. To verify that the contract_approval namespace is correctly deployed or created in CMS, select
OpenText Thrust Services Tutorial > Content Metadata Service > namespaces. The
examples related to the namespace requests are listed.

You will have a look at the one that allows to retrieve the namespace you created.

8. Open the Get ‘Contract Approval’ namespace request and click Send.

As you can see, the Contract Approval namespace is displayed, which means the collection is
deployed. The display_name, name, description, and prefix attributes are shown.

Note that the request that is used, {{base_url}}/cms/namespaces?filter=name eq
'contract_approval' has a filter to retrieve the namespaces with a name equal to
‘contract_approval’.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 196

All the requests are based on the API reference documentation. Go to developer.opentext.com,
select the appropriate request explanation. This applies to all requests in the collection. For
related documentation, see:

• Content Metadata Service API reference

• Content Storage Service API reference

• Decision Service API reference

• Risk Guard Service API reference

• Workflow Service API reference

In the case of this specific request, you will find the explanation under [GET] Get list of
Namespaces for the Namespace resource.

In theory, the request to use to get a specific namespace is the Get Namespace Details GET
request, but this requires the unique ID (in UUID string format) of the namespace to be passed.

That’s why the filtering mechanism on the Get list of Namespaces request is used (so that it
always works, no matter the namespace’s ID value).

https://developer.opentext.com/
https://developer.opentext.com/imservices/products/contentmetadataservice/apis/contentmetadata
https://developer.opentext.com/imservices/products/contentstorageservice/apis/contentstorage
https://developer.opentext.com/imservices/products/decisionservice/apis/decision
https://developer.opentext.com/imservices/products/riskguardservice/apis/riskguard
https://developer.opentext.com/imservices/products/workflowservice/apis/workflow

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 197

9. To verify the approval trait, select OpenText Thrust Services Tutorial > Content Metadata
Service > traits and perform the Get ‘Approval’ trait GET request.

10. To verify the deployment of the contract, loan_contract and customer types, perform the
following requests:

• /Content Metadata Service/types/file/Contract/types/Get ‘Contract’ type

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 198

• /Content Metadata Service/types/file/Loan Contract/types/Get ‘Loan Contract’ type

• /Content Metadata Service/types/folder/Customer/types/Get ‘Customer’ type

For types, the collection structure has additional levels to distinguish between the file and folder

type category, and the individual types of the Contract Approval application. Requests to retrieve

and manipulate type instances (that are created when using the application) are provided as

well.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 199

11. To verify the required_approvals decision model, execute the /Decision Service/ Get
'Required Approvals' decision model request.

12. The last deployed model to verify is the contract_approval workflow model. To do this, perform
the /Workflow Service/Get ‘Contract Approval’ process model request.

Next exercise module:

Build the Contract Approval application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 200

14 [30’] Build the Contract Approval

application

Learn how to:

• Import the finished Contract Approval App code into your project

• Understand the main logic of the Contract Approval application from the App.jsx React code

• Authenticate and get authorized with the OpenText Thrust Services APIs

• Set the environment variables for the Contract Approval application to run from your computer

• Use the content (CSS and CMS) APIs

• Use the Workflow Service API

• Use the Viewer Service API

• Use the Risk Guard Service API

During this exercise module you will be going through the code of the Contract Approval application.

Although you will import and not actually write the (JavaScript and React) code, except for setting the

environment variables in the .env file, you will go over its structure, logic and how it calls the different

OpenText Thrust services APIs (CSS, CMS, Decision Service, Workflow Service, Viewer Service and

Risk Guard Service).

It is not the intent to go over every single detail of how the code was written but you will touch upon

the key aspects of how the Contract Approval application is developed, so that you have a good

starting knowledge to build any application of your own.

For more information on the CSS, CMS, Decision Service, Workflow Service, Viewer Service and

Risk Guard Service APIs, you can refer to their API reference documentation, respectively CSS API

Reference, CMS API reference, Decision Service API reference, Workflow Service API reference,

Viewer Service API reference and Risk Guard Service API reference. Each service also has a more

functional product documentation (that is, how to do things): Content Storage product documentation,

Content Metadata product documentation, Decision product documentation, Workflow product

documentation, Viewing & Transformation product documentation, and Risk Guard product

documentation.

After completing this session, you will understand how the code of the Contract Approval application

is written, how it consumes the deployed models, and how it calls the different OpenText Thrust

Services APIs.

https://developer.opentext.com/imservices/products/contentstorageservice/apis/contentstorage
https://developer.opentext.com/imservices/products/contentstorageservice/apis/contentstorage
https://developer.opentext.com/imservices/products/contentmetadataservice/apis/contentmetadata
https://developer.opentext.com/imservices/products/decisionservice/apis/decision
https://developer.opentext.com/imservices/products/workflowservice/apis/workflow
https://developer.opentext.com/imservices/products/viewingtransformationservices/apis/viewerservice
https://developer.opentext.com/imservices/products/riskguardservice/apis/riskguard
https://developer.opentext.com/imservices/products/contentstorageservice
https://developer.opentext.com/imservices/products/contentmetadataservice
https://developer.opentext.com/imservices/products/decisionservice
https://developer.opentext.com/imservices/products/workflowservice
https://developer.opentext.com/imservices/products/workflowservice
https://developer.opentext.com/imservices/products/viewingtransformationservices
https://developer.opentext.com/imservices/products/riskguardservice
https://developer.opentext.com/imservices/products/riskguardservice

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 201

14.1 Import the Contract Approval App code into
your project

The first step in this exercise is to import the code into your VS Code project. Make sure you have

saved a copy of the finished Contract Approval application on your file system as described in

Download the Contract Approval application.

1. Navigate into the project folder of the finished Contract Approval application (that is, demo-
contract-approval-app-master if you did not modify the project folder name) and copy the
following folders and files into the root of your Contract Approval project:

• public folder

• src folder

• .env file

• .eslintrc.yml file

• .npmrc file

• index.html file

• package.json file

• vite.config.js file

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 202

2. Open your project in VS Code. The copied folders and files are visible in the Explorer view.

Next step:

Understand the main logic of the Contract Approval application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 203

14.2 Understand the main logic of the Contract
Approval application

The App.jsx file contains the main logic for the application (React application). This file is available

from the /src folder.

1. Open the App.jsx file and scroll to the return statement of the App() functional component that
returns the JSX (XML-like syntax that allows to write HTML in React) that represents the main
application user interface (UI).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 204

• The Header (cf. Header.jsx for more details) component is the header bar of the Contract

Approval application. It displays the OpenText logo, the application name, and the username

of the connected user. The username is also a menu that allows the connected user to log

out from the application.

• The groups.includes('contract_approval_users') statement is used to verify that the user

is part of the contract_approval_users group (or one of its sub groups) to determine

whether they are allowed to use the application.

• If the user is authorized to use the application, a four (horizontal) tabs UI layout is displayed,

with the Tabs component and its Tab child components representing the tabs, and the

ApplicationProvider component with its TabPanel child components representing the views

to show when clicking the tabs.

The four horizontally stacked tabs generated by this part of the code are:

o The Created Contracts tab with the CreatedContractList component providing the

“created contracts list” view to show all newly created contracts, that is, where status =

‘CREATED’.

o The Line Manager Tasks tab with the TasksList component providing the “Line

Manager Approval” tasks view to show all approval tasks for the Line Manager. This tab

is only shown if the list of groups, the authenticated user is a member of, includes the

line_managers group.

o The Risk Manager Tasks tab with the TasksList component providing the “Risk

Manager Approval” tasks view to show all approval tasks for the Risk Manager. This tab

is only shown if the list of groups, the authenticated user is a member of, includes the

risk_managers group.

o The All Contracts tab with the ContractList component providing the “all contracts” view

to show all contracts in the application, independently of their status.

If the user is not authorized to use the application, they are presented with a “not authorized”

message and a button to log out.

Next step:

Understand the main logic of the Contract Approval application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 205

14.3 Authenticate and get authorized with the
OpenText Thrust Services APIs

Beyond the main application UI, the App.jsx file also contains code that manages the authentication

and authorization logic in combination with the code in the following files:

• WrappedSecuredApp.jsx (under /src)

• OidcConfig.js (under /src/authorization)

1. Open the WrappedSecuredApp.jsx file. This file is the component that “wraps” the application
with security.

Note

To authenticate with the OpenText Thrust Services APIs, the Contract Approval App

uses OpenID Connect (OIDC), an authentication protocol that sits on top of OAuth

2.0. More specifically, using the Public Client ID for the deployed application, an

authentication flow that uses an external (to the Contract Approval application) login

screen is used to authenticate with the OpenText Cloud Platform, allowing to

subsequently call the different Thrust Services APIs.

• The AuthProvider component wraps the security around the App component (from the

App.jsx file). It is imported from the react-oidc-context library to deliver the OIDC

authentication mechanism. The authentication and authorization parameters for the security

to apply to the contained App are defined through the OidcConfig configuration object, which

the AuthProvider component takes as a parameter.

• The OidcConfig configuration object is imported from OidcConfig.js

Note

The react-oidc-context library is available to be imported/referenced, because it is

defined as a dependency in the package.json file. To check the different project

dependencies, you can open the package.json file.

The package.json file is the main configuration file for a Node.js project, and the

Contract Approval application is a React application set up to run in Node.js.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 206

2. Open the OidcConfig.js file to examine the different OIDC (that is, authentication and
authorization) configuration parameters.

• The authority is the URL of the authority (or identity provider) and it is used as the main URL

for the authentication flow.

• The client_id is the Public Client ID for the deployed application.

• The redirect_url is passed as part of the authentication flow to allow redirecting back into the

(Contract Approval) application once authenticated.

• The response_type tells the authorization server which grant to execute.

• The scope is a space-delimited list of permissions that the application requires.

• The post_logout_redirect_uri defines the application page to redirect to after the logout

completes.

• The onSigninCallback is the callback function that defines the logic to execute when the

sign in occurs. Here the authorization code is removed from the url for security reasons.

As you can see, to construct the parameter values, process.env.<ENVIRONMENT_VARIABLE>
is used, which corresponds with the environment variables filled in the .env file (available in the
project root).

Note

The .env file needs to be correctly filled for the application to work and how to do

this is described in the Set the environment variables section.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 207

3. Go back to the App.jsx file to examine the use of the security mechanism and configuration
provided by the wrapping WrappedSecuredApp component and configured by the OidcConfig
configuration object.

• The useAuth method is imported from the react-oidc-context library to provide the

activeNavigator, error, isAuthenticated, isLoading, user, signinRedirect, and

signoutRedirect. These are used for signing in (if not authenticated), signing out, returning

user information (including user groups), handling errors, and managing whether the

application is still loading and authenticating.

• The jwtDecode method is imported from the jwt-decode library to allow decoding the JWT id

token available from the (authenticated) user object. This is important because it allows

retrieving the groups the user belongs to in order to display the correct application tabs.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 208

Next step:

Set the environment variables.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 209

14.4 Set the environment variables
In the previous section on authentication and authorization, it is explained that to access the different

OIDC configuration parameters, process.env.<ENVIRONMENT_VARIABLE) is being used.

The corresponding environment variables are configured in the .env file.

1. Open the .env file (available from the project root folder) to configure the environment variables to
be able to run the Contract Approval application.

2. Update the .env file as follows:

• Replace the <replace with region> with the region of your developer subscription (for this

tutorial we use us, but if your developer subscription is in a different region, you must use that

region).

• Replace <replace with tenant_id> with the corresponding value you saved after deploying

the application project. More specifically, use the tenant id (from the text in tenants

‘[“<tenant id>”]‘).

• Replace <replace with client_public_id> with the corresponding value you saved after

deploying the application project. More specifically, use Public Client ID.

3. Save and close the .env file.

Next step:

Use the content (CSS and CMS) APIs.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 210

14.5 Use the content (CSS and CMS) APIs
To store and manage content in the OpenText Cloud Platform, two Thrust Services APIs need to be

used. The Content Storage Service (CSS) API allows to store and retrieve the actual (binary) content

files (that is, the different file renditions), whereas the Content Metadata Service (CMS) API can be

used to manage the associated file object metadata. It is through combining these two APIs that you

can manage file objects.

Beyond file objects (that is, objects with content), the CMS API also provides the capability to manage

folders (containers for other folders, files, and objects), objects (contentless objects) and relations.

To understand how to use the CSS and CMS APIs, let’s have a closer look at the first of the four

application views (that is, the view for the first tab). The “created contracts list” view provided through

the CreatedContractList component does not only show the newly created contracts (status =

‘CREATED’), but it also provides the button to add new contracts to the system.

1. Open the CreatedContractList.jsx file from the /src/components folder.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 211

2. Scroll to the return statement of the CreatedContractList() functional component as it represents
the “created contract list” UI.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 212

• The “Add” Button at the top of created contract list allows adding new contracts via the

AddContract component.

• The TableContainer component provides the table layout to display the list of the different

contracts that have the ‘CREATED’ status.

• The TableHead and TableBody components represent the column headers and the rows

with the values, each table row in the table body will show the following information for the

displayed contract:

o Contract name

o Creation date

o Value

o Risk classification

o Original (this is not a property value but a button to open the actual document in the

viewer from the Viewer Service through the DocumentDialogView component)

o Request Approval (this is not a property value but a button to start the contract approval

workflow)

o An arrow icon button allowing to open the contract details (the contract attributes

screen) through the ContractDetails component

The table rows are generated by iterating over the state.contracts array, and in its turn

state.contracts is populated by the getContracts method (called when the created contracts

list needs updating).

3. If you look at the getContracts method, you easily recognize the (axios) GET request to the
/cms/instances endpoint of the CMS API with the user.access_token (bearer) token passed as
the Authorization header.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 213

4. To understand how to use the CSS and CMS APIs to create a new contract, open the
AddContract.jsx file (again from the /src folder) and first look for the // Adding contract content
file comment in the code.

• The (axios) POST call uploads the selected (contract) file to CSS.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 214

5. After uploading the file to CSS, the second step in the contract creation code is to create the
metadata object. Look for // Setting contract metadata comment.

• The type of contract to create is determined using the system names, ca_loan_contract or

ca_contract, where the ca prefix represents the namespace.

• Another (axios) POST call creates the file metadata object in CMS. It passes the contract’s

properties, rendition (linked to the previously uploaded CSS file via the blob_id), and traits as

payload.

Next step:

Use the Workflow Service API.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 215

14.6 Use the Workflow Service API
To illustrate the use of the Workflow Service API, you will look at the piece of code where the

approval workflow is launched.

1. Open the CreatedContractList.jsx file again and locate the startContractForApproval method.

2. First, the data object to pass as payload to the Workflow Service API gets constructed. It contains
the processDefinitionKey matching the name of the workflow model and allowing to identify the
workflow to create an workflow instance for, a user-friendly name, and the process variables to
pass to the new workflow instance (cf. Create the Contract Approval workflow).

3. Secondly, the Workflow Service API that launches the workflow instance (with the data payload)
gets called via a (axios) POST call.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 216

4. To have an example of how to call the task related service endpoints, feel free to explore the
Tasks.js file under /src/services/workflow.

The Workflow Service tasks API is used in the Contract Approval application to interact with the

contract approval workflow’s manual user tasks (that is, the Line Manager approval tasks and the

Risk Manager approval tasks). More specifically, it provides the different REST API endpoints that

are called from the getTasks(), claimTask(), and completeTask() methods from the Tasks utility

class.

Next step:

Use the Viewer Service API.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 217

14.7 Use the Viewer Service API
The Viewer Service exposes a powerful file viewer that can be configured in a very granular way.

To understand how to use and configure the viewer from the Viewer Service, it is recommended that

you have an in-depth look at the FileViewer.jsx file available from the /src folder.

For this tutorial, you will focus on how to interact with the viewer API (bravaApi).

1. Open the FileViewer.jsx file and explore the toolbarWithMarkupStuff,
tabContainerWithMarkups and markupTools constants. They represent the detailed
configuration of the different viewer components/features.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 218

2. Explore the useEffect() hook method to understand how the configuration gets applied to the
bravaApi and ultimately returned to render the viewer.

3. The absolute minimum for the viewer to render correctly is the following code snippet (showing a
drastically reduced useEffect() method):

It is recommended you try out different configurations by modifying the useEffect() method’s

content.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 219

4. To help with understanding the Viewer Service configuration, two additional files in the
/src/components folder are included: FileViewer.jsx-minimal and FileViewer.jsx-full. They
respectively provide an example of the minimal set of configuration settings (as shown in the
above code snippet) and an example of the viewer with all configuration settings enabled and
configured. Feel free to try adding or removing configuration settings using these two example
files as reference.

The FileViewer.jsx file that is used for the Contract Approval application shows you an example
of how the configuration can be applied to display/overlay a screen banner (footer) and a
watermark on the viewed document pages, and to provide markup tools from the left panel under
a markups tab.

Next step:

Use the Risk Guard Service API.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 220

14.8 Use the Risk Guard Service API
The last API to look into is the Risk Guard Service API. Risk Guard offers the ability to submit the

content of a file/document to analyze it and identify potentially risky or sensitive content.

The Contract Approval application calls the Risk Guard Service API to determine the risk level of a

newly created contract (that is, uploaded file).

1. First, (re)open the AddContract.jsx file as it holds the code that creates a new contract. More
specifically, the Risk Guard Service API gets called at the beginning of the submitContract
method.

The processDoc() method of the riskGuardService (instance of RiskGuard class) is called to

return the riskClassification and extractedTerms for the contract that is being submitted.

2. The code that interacts with the Risk Guard Service API sits within the RiskGuard utility class, so
the second bit of code to look at is in the RiskGuard.js file, located under
/src/services/riskguard.

The processDoc() method calls the Risk Guard Service API through a (axios) POST request,

passing the given (contract) file as the FormData data payload of the call (which requires to set

the Content-Type header to multipart/form-data).

3. Feel free to also have a look at how the risk classification is computed in the calculateRisk()
method.

CONGRATULATIONS!

You have now finished building the Contract Approval application. In the next exercise module, you

will test it and run through the different contract approval scenarios.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 221

Next exercise module:

Test the Contract Approval application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 222

15 [60’] Test the Contract Approval

application

Learn how to:

• Run a React application that consumes the OpenText Thrust Services APIs

• Sign in to the application using an external login screen and redirect into the application

• Explore the Contract Approval application UI and features

• Test uploading a (contract) file and filling its metadata (consuming the Content Storage Service
and Content Metadata Service APIs)

• Test the applying of ACLs (consuming Content Metadata Service API)

• Test the updating of document metadata and traits (consuming the Content Metadata Service
API)

• Test the detection of sensitive content (consuming the Risk Guard Service API)

• Test the Viewer (consuming the Viewer Service API)

• Test the different contract approval flows, including rejection and expiry of manual approval tasks
(consuming the Workflow Service and Decision Service APIs)

During this exercise module you will be testing the Contract Approval application. You will run through

different scenarios to demonstrate the different behaviors that depend on the automated and manual

choices that can be made within the application.

Note

If you have not gone through all the exercise modules to build the Contract Approval
application yourself, you must first set up your testing environment according to the
following steps:

• Be certain that you have checked and fulfilled the Prerequisites.

• Set up your IDE as described in Set up the OpenText Thrust Studio IDE.

• Connect to your developer organization as described in Set up a connection to the
developer organization.

• Download the finished version of the Contract Approval application as described in
Download the Contract Approval application.

• Once downloaded and extracted, make sure to open the demo-contract-approval-app-
master folder in VS Code, as this is the root of your project.

• Deploy the application into your developer organization as described in Deploy an
application to the OpenText Thrust Services.

• Update the .env file as described in Set the environment variables.

To help with understanding the application that you are going to test, this is a very
short explanation of its main project folders:

• src: contains the JavaScript and React code that communicates with the
OpenText Thrust Services APIs and provides the User Interface (UI) of the
application

• otresources: contains the different models (built with OpenText Thrust Studio)
that you deployed to the OpenText Thrust Services

You are now ready to proceed with this exercise and test the Contract Approval
application.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 223

15.1 Start the Contract Approval application and sign
in

1. Open the Contract Approval application project in VS Code and open a new Terminal window.

2. In the Terminal window run the npm install command. This will install all dependencies

needed by your application to run.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 224

3. After the npm install process has completed, launch the application using npm start. This will

result in a new browser window opening on https://localhost:4000.

Click the Advanced button and select Proceed to localhost (unsafe). Note that the screen

shots are of Google Chrome and that the equivalent action on your own web browser can be

different.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 225

4. In case you have a new subscription and/or have not yet set your tenant admin password, you
need to (re)set it from this screen before logging in as you are using the tenant admin email for
the regular user (the line manager and risk manager passwords have been set earlier in this
tutorial). To reset the tenant admin password, fill the regular user email address and select
FORGOT PASSWORD.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 226

5. Go to your email inbox and from the new OpenText Password Reset email, click the RESET
PASSWORD button, and reset the password.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 227

6. Close and reopen the browser, navigate to localhost:4000 and sign in.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 228

You are now logged in to the Contract Approval application.

Next step:

Approve a standard contract that only requires automatic approval (no additional required approvals).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 229

15.2 Approve a standard contract that only requires
automatic approval (no additional required
approvals)

1. Have a look at the different tabs. As previously described when discussing the application code,
as a regular user (that is, not being a member of the line_managers or risk_managers groups),
the currently connected user can only see two tabs from the four tabs in total:

• CREATED CONTRACTS: this tab shows all newly created contracts that have not yet been

submitted for approval (that is, contracts with the status attribute equal to ‘CREATED’)

• ALL CONTRACTS: this tab shows all contracts, independently of their status (that is, created,

pending approval, approved, rejected, expired) with the ability to filter on contract name and

status (not case sensitive).

2. After checking the different tabs that the regular user can see, create a first standard contract.

To trigger the simplest approval process, you will create a contract with the following

characteristics:

o Type: standard contract (doesn’t require solvency check)

o Value: below 1000 (doesn’t require Line Manager approval)

o Risk classification: below 4, that is, NONE, LOW or MEDIUM (doesn’t require Risk

Manager approval)

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 230

3. Select the CREATED CONTRACTS tab and click the + ADD button to open the contract creation
form.

4. From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 231

5. To help with selecting a file that matches the intended contract properties (certainly the risk
classification, as this gets determined by what the Risk Guard Service discovers in the
document), a test_documents folder is provided under the finished version of the Contract
Approval application project.

From this test_documents folder, open the 01_standard_contracts subfolder and select the
Standard Contract [RISK = 1-NONE].pdf file.

6. Make sure the Standard Contract option is selected and fill the contract properties as follows:

Property Value

Document name First standard contract

Contract value 500

Contract requester email <your email>

7. Click Add to create the contract.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 232

At the bottom of the screen, the creation of the new contract is confirmed by a “Contract added
successfully” message.

The first standard contract is now created.

8. Explore the contract list capabilities from the CREATED CONTRACTS view.

First, note that the Risk classification property indeed shows NONE as risk level. Click on the

 (information icon) next to the NONE risk classification value to see which terms the call to the
Risk Guard Service API has identified and extracted.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 233

A few names, addresses, geographic locations, and organization names were found, but nothing

that warrants increasing the risk level (hence risk classification = NONE).

9. Click CLOSE to close the Extracted Terms information screen.

10. Click on the ORIGINAL button (in the View document column) to view the uploaded document
content.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 234

The file content of the contract displays to be viewed (in the viewer from the Viewer Service).

The toolbar at the top of the viewer allows multiple actions (as defined in the code of the
FileViewer.jsx file):

• Toggle panel

• Download document

• Toggle pan mode (allowing to use the cursor to navigate the document)

• Zoom window (allowing to draw a window on the document to zoom into)

• Save markups

• Zoom in

• Zoom out

• Fit document to screen

• Fit width to screen

• Rotate left

• Page selector

11. Although most of the actions in the toolbar are self-explanatory, have a look at the panel toggle.

Click the Toggle panel button to open the (left) side panel.

The side panel shows two tabs (again as per the code in FileViewer.jsx). The Pages tab shows
the page thumbnails, and the Markups tab provides the markup tools.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 235

12. Click the Markups tab to switch to the markup tools view.

13. Select a markup shape, draw it on the document (for example, an arrow), and click the Save
markups button to save it.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 236

14. You can explore creating/modifying/deleting/commenting other markups, but for the purpose of
this tutorial just press the esc key to unselect the markup and proceed with further examining the
viewer.

15. The two last things defined in the FileViewer.jsx code to draw your attention to are the ORIGINAL
watermark (across the document pages) and the Viewer Service by OpenText | Document
Viewed at <computed viewing time> footer.

16. To go back to the main application screen, close the viewer with the on the top right.

17. Click on (caret arrow icon) to view the contract details.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 237

18. In the Contract details screen, there are three tabs. The first one shows the contract properties.

Note that the PROPERTIES tab indeed displays a status of ‘CREATED’ and that the risk
classification is 1 (which is the corresponding integer value for the NONE risk level).

19. Click the PERMISSIONS tab to have a look at the different permissions for this contract.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 238

20. The PERMISSIONS tab displays the permissions for the contract (full control access for the
administrators, read access for the contract_approval_users, and full control for the owner).

21. Click the APPROVALS tab to view the different approvals for this contract.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 239

22. The APPROVALS tab displays the different approval steps (traits) for the standard contract type
(Automatic Approval, Line Manager Approval and Risk Manager Approval). As you can see,
the only approval step marked as required is the Automatic Approval.

23. Click CLOSE to close the Contract details screen.

24. Back in the CREATED CONTRACTS view, you can now launch the approval workflow. Click the
REQUEST APPROVAL button in the Action column to do that.

At the bottom of the screen the “Approval requested successfully” message confirms that the

approval process has started.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 240

25. The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer
in ‘CREATED’ status.

26. Since the value of the contract is below 1000, no line manager approval is required. There is also
no need for the risk manager to approve, as the risk classification is NONE (1) which is below
HIGH (4).

Open the ALL CONTRACTS view to confirm the contract has been automatically approved

(Status column shows APPROVED status), without needing any manual approval by the line

manager or risk manager.

27. Open the contract details as well, and more specifically the approval steps/traits by clicking
(caret arrow icon) and selecting the APPROVALS tab.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 241

28. The APPROVALS tab still shows that only the Automatic Approval was required, but with the
difference that it has now been granted by Approver SYSTEM with the Approver role of
Automatic Approval at a specific Approval date and time.

Click CLOSE to return to the ALL CONTRACTS view.

29. The first standard contract is now approved.

Go to your email client and check the inbox and confirm recieving (due to the email task in the
workflow) a Contract Approval Status email from no-reply@<region>.opentext.com.

Next step:

Approve a loan contract that requires all additional approvals.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 242

15.3 Approve a loan contract that requires all
additional approvals

1. The second contract to create will follow the most extensive process flow (requiring all automated
and manual approvals). To that end, you will create a contract with the following characteristics:

• Type: loan contract (requires solvency check)

• Monthly loan cost is below or equal to 25% of monthly income (requester is solvent, so

automatic solvency check will not reject the contract approval request)

• Value: above 5000 (requires Line Manager approval)

• Risk classification: above 3, that is, HIGH or VERIFY HIGH (requires Risk Manager

approval)

2. Select the CREATED CONTRACTS tab and click the + ADD button to open the contract creation
form.

3. From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 243

4. From the test_documents folder, open the 02_loan_contracts subfolder and select the Loan
Contract [RISK = 5-VERY HIGH].pdf file.

5. Select the Loan Contract option and fill the contract properties as follows:

Property Value

Document name First loan contract

Contract value 12000

Monthly installments 12

Yearly income 100000

Contract requester email <your email>

6. Click Add to create the contract.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 244

7. Click on (information icon) next to the VERY HIGH risk classification value to see which terms
the call to the Risk Guard Service API has identified and extracted.

Contrary to the previous contract you created, this contract contains high risk personal
information, such as a social security number (considered very high risk), a credit card number, a
bank account, and many person names (hence risk classification = VERY HIGH). Some
addresses, geographic locations, and organization names were also found.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 245

8. Click CLOSE to close the Extracted Terms information screen.

9. Click on (caret arrow icon) to view the contract details.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 246

10. In the PROPERTIES tab of the Contract details screen note that, since this is a loan contract,
the monthly installments and yearly income are also displayed. The risk classification is now
equal to 5 (the corresponding integer value for the VERY HIGH risk level).

11. Click the APPROVALS tab to have a look at the different approvals for this contract.

12. The APPROVALS tab displays the different approval steps (traits) for the loan contract type
(Automatic Approval, Line Manager Approval, Risk Manager Approval, and the additional
Solvency Check).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 247

13. Click CLOSE to close the Contract details screen.

14. Back in the CREATED CONTRACTS view, you can now launch the approval workflow. Click the
REQUEST APPROVAL button in the Action column to do that.

15. The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer
in ‘CREATED’ status. Open the ALL CONTRACTS tab to see its current status.

The status is now ‘PENDING APPROVAL’.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 248

16. Click (caret arrow icon) to view the contract details again.

17. From the PERMISSIONS tab you can see that the ACL is changed to grant custom permissions
to allow the approval by the line manager and the risk manager.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 249

18. Additionally, from the APPROVALS tab, you can see that the Solvency Check approval is
granted (because the requester is solvent) and that the Line Manager Approval and Risk
Manager Approval are required.

Click CLOSE to close the Contract details screen.

19. To perform the manual approval by the line manager, you must first sign in as the line manager.
To do this, click the user name (email) at the top of the application screen and choose Logout.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 250

20. Sign in with the line manager email (the one with +linemgr before the @).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 251

21. Since you are now logged in as line manager, in addition to the regular user’s CREATED
CONTRACTS and ALL CONTRACTS tabs, you can also see the LINE MANAGER TASKS tab.

22. Click the LINE MANAGER TASKS tab. An approval task is waiting for the Line Manager to
approve.

23. First a line manager has to claim the approval task. So, click CLAIM to assign the approval to
your user.

24. Now you can click APPROVE to approve as the Line Manager.

25. The contract has now disappeared from the LINE MANAGER TASKS view. Open the ALL
CONTRACTS tab to see its current status.

The status is still ‘PENDING APPROVAL’ because the risk manager approval is also pending.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 252

26. Click on (caret arrow icon) to view the contract details again.

27. The APPROVALS tab shows that the Line Manager Approval is granted.

Click CLOSE to return to the ALL CONTRACTS view.

28. In the same way as with the line manager, to perform the manual approval by the risk manager,
choose to Logout and sign in as the risk manager.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 253

29. Sign in with the risk manager email (the one with +riskmgr before the @).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 254

30. Since you are now logged in as risk manager, you can see the RISK MANAGER TASKS tab
(and no LINE MANAGER TASKS tab).

31. Click the RISK MANAGER TASKS tab. An approval task is now waiting for the Risk Manager to
approve.

32. First a risk manager has to claim the approval task. So, click CLAIM to assign the approval to
your user.

33. Now you can click APPROVE to approve as the Risk Manager.

34. The contract has now disappeared from the RISK MANAGER TASKS view. Open the ALL
CONTRACTS view to confirm that the contract has been automatically approved (Status column
shows APPROVED status).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 255

35. Click on (caret arrow icon) to view the contract details.

36. From the PERMISSIONS tab you can see that the ACL is changed so that everyone except the
administrators has read permissions.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 256

37. The APPROVALS tab now shows that both the Risk Manager Approval and the Automatic
Approval are granted. That is, all four approvals were required for this loan contract, and all four
approvals are granted.

Click CLOSE to return to the ALL CONTRACTS view.

38. The first loan contract has now been approved.

Go to your email client and check the inbox to confirm recieving the corresponding Contract
Approval Status email from no-reply@<region>.opentext.com.

Next step:

Reject a manual contract approval task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 257

15.4 Reject a manual contract approval task
You have now successfully approved two contracts with two completely different approval flows. In

this section, you will test the scenario where an approver does not approve (that is, rejects) the

contract.

You will create a contract with the following characteristics:

• Type: standard contract

• Value: above 1000 (requires Line Manager approval)

• Risk classification: above 3, that is, HIGH or VERIFY HIGH (requires Risk Manager approval)

1. Log back in as the regular user, select the CREATED CONTRACTS tab and click the + ADD
button to open the contract creation form.

2. From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 258

3. From the test_documents folder, open the 01_standard_contracts subfolder and select the
Standard Contract [RISK = 4-HIGH].pdf file.

4. Make sure the Standard Contract option is selected and fill the contract properties as follows:

Property Value

Document name Second standard contract

Contract value 5000

Contract requester email <your email>

5. Click Add to create the contract.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 259

6. Click the REQUEST APPROVAL button in the Action column to launch the approval workflow.

7. The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer
in ‘CREATED’ status.

8. Sign in as the line manager and go to the LINE MANAGER TASKS tab. You can see the new
Line Manager approval task.

9. Click CLAIM to assign the approval to your user.

10. Click REJECT to reject the contract approval.

11. The contract has now disappeared from the LINE MANAGER TASKS view. Open the ALL
CONTRACTS view to see that the contract has indeed been rejected (Status column shows
REJECTED status).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 260

12. Click (caret arrow icon) to view the contract details and check the different approvals (traits).

13. From the Line Manager Approval entry, you can see that the contract has been rejected
because, although the Approval date has been set, Granted is false.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 261

14. The second standard contract has not been approved (that is, it has been rejected).

Go to your email inbox and confirm receiving the corresponding Contract Approval Status email
from no-reply@<region>.opentext.com.

Next step:

Expire a manual contract approval task.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 262

15.5 Expire a manual contract approval task
1. The last scenario to run through is to let an approval task expire (happens after 5 minutes).

You will create a contract with the following characteristics:

• Type: loan contract

• Value: below 5000 (doesn’t require Line Manager approval)

• Risk classification: above 3, that is, HIGH or VERIFY HIGH (requires Risk Manager

approval)

2. One more time, login with the regular user, select the CREATED CONTRACTS tab and click the
+ ADD button to open the contract creation form.

3. From the Add Contract screen, click SELECT DOCUMENT to add the contract content file.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 263

4. From the test_documents folder, open the 02_loan_contracts subfolder and select the Loan
Contract [RISK = 4-HIGH].pdf file.

5. Select the Loan Contract option and fill the contract properties as follows:

Property Value

Document name Second loan contract

Contract value 3500

Monthly installments 12

Yearly income 50000

Contract requester email <your email>

6. Click Add to create the contract.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 264

7. Click the REQUEST APPROVAL button in the Action column to launch the approval workflow.

8. The new contract has now disappeared from the CREATED CONTRACTS view, as it is no longer
in ‘CREATED’ status.

9. Sign in as the risk manager and go to the RISK MANAGER TASKS tab. You can see the new
Risk Manager approval task.

10. To test whether or not the approval task will expire, wait for more than 5 minutes and refresh the
application page from the web browser.

11. After refreshing the application screen, go back to the RISK MANAGER TASKS view.

The contract has now disappeared from the RISK MANAGER TASKS view.

12. Open the ALL CONTRACTS view to see that the contract approval has indeed expired (Status
column shows EXPIRED status).

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 265

13. Click (caret arrow icon) to view the contract details and check the different approvals (traits).

14. You can see that the contract is not approved by the Risk Manager since the Risk Manager
Approval has NOT been granted. However, you can also see that there has not been a rejection
action as the approval date is not filled. The approval activity simply timed out.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 266

15. The second loan contract has not been approved since the Risk Manager Approval step expired.
Go to your email inbox and confirm receiving the corresponding Contract Approval Status email
from no-reply@<region>.opentext.com.

CONGRATULATIONS!

You have now finished building and testing the Contract Approval application. You are at the end of

the main part of the tutorial.

There is one more bonus exercise where you will learn about the ocp cli. If you are interested in build

automation and CI/CD for your applications, it is recommended that you do that exercise module as

well.

Next exercise module:

Bonus exercise: Use the ocp command line interface.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 267

16 [15’] Bonus exercise: Use the ocp

command line interface

Learn how to:

• Install the stand-alone ocp command line interface (cli)

• Use organization profiles with the ocp cli

• Deploy projects with the ocp cli

In this exercise module you will use the OpenText Cloud Platform command line interface, or in short

ocp cli. This cli allows you to manage organization profiles, deploy projects, and to create local

packages.

Note

One of the main purposes of this cli is to be used in a CI/CD scenario. It allows to

automate the deployment of the application models needed to run automated tests.

Please refer to the OpenText Thrust Studio User Guide for more details on CI/CD

and how to use the ocp cli in that context.

https://mimage.opentext.com/ot/2/devx/vscode/latest/vscode-userguide.pdf

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 268

16.1 Install the ocp cli
The ocp cli is available from npm, which is a public software registry. Installing the ocp cli is done with

the npm command, which is already available as part of the Node.js installation.

1. Open a command prompt or terminal and execute the command:

npm install -g @opentext/ocp

This installs the ocp cli on your system and makes it available globally.

2. In the command prompt or terminal execute the following command to see the information on how
to use the ocp cli:

ocp --help

This shows the command groups and actions that can be used with the cli.

3. To see the detailed information on how to use a specific command use:

ocp <command group> --help

Next step:

Use the developer profile.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 269

16.2 Use the developer profile
To access the OpenText Thrust Services APIs you already set up a developer profile in VS Code (see

Add an organization profile). This profile’s data is shared between VS Code and the ocp cli. This

means that the cli can be used to see and manage the already added profile.

1. In the command prompt or terminal execute the following command to display the already
configured profile:

ocp local profile list

This shows the available profile as added earlier:

If you have set up your organization profile and tenant according to the tutorial and have not
added any other organization, there is only one organization profile being shown and it is also the
Default organization profile. Otherwise, multiple organization profiles will be listed with one being
the Default organization profile.

2. Use the authenticate action to authenticate using the default profile. In the command prompt or
terminal execute the command:

ocp local profile authenticate

This starts the authentication flow and after successful authentication a message is displayed that

an authentication code was received:

Next step:

Deploy the application project from command line.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 270

16.3 Deploy the application project from command
line

One of the main purposes of the ocp cli is to deploy application projects. When deploying an

application project, first a temporary package is created, after which it gets uploaded to the ALM

deployment service. The package is validated and its models are deployed. When an application

project is deployed for the first time the API key data is returned and displayed.

Deploy an application project with the ocp cli using the deploy action.

1. In the command prompt or terminal, change the directory to be the folder that contains the
.otproject file, as this is the main project folder of the application project.

2. In the command prompt or terminal execute the command to deploy the application project:

ocp local project deploy

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 271

3. Normally the temporary application package is deleted after it is uploaded to the ALM deployment
service. By using the package create action the package can be saved in a local file. This allows
the file to be stored for deploying at a later moment or to a different environment.

In the command prompt or terminal execute the following command to save the package to a
local file:

ocp local package create

This saves the application package to the file called contract_approval_1.0.otpp in the current

folder.

4. The created package can be deployed in a different tenant in the organization, or in another
tenant in another organization. The package doesn’t contain any tenant or organization specific
data.

In the command prompt or terminal execute the following command to deploy the saved package:

ocp local package deploy --source contract_approval_1.0.otpp

This deploys the application package in the same way as a deploy of the application project for
which the package was created.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 272

You have now completed this bonus exercise about using the stand-alone ocp command line

interface.

OpenText™ Thrust Services Tutorial

Copyright © 2025 Open Text. All rights reserved. Trademarks owned by Open Text. 273

About OpenText

OpenText enables the digital world, creating a better way for organizations to work with information,

on-premises or in the cloud. For more information about OpenText (NASDAQ/TSX: OTEX),

visit opentext.com.

Connect with us:

OpenText CEO Mark Barrenechea’s blog

Twitter | LinkedIn

https://opentext.com/
https://blogs.opentext.com/category/ceo-blog/
https://blogs.opentext.com/category/ceo-blog/
https://twitter.com/OpenText
https://www.linkedin.com/company/opentext

	Introduction
	1 [5’] Get started
	1.1 Audience
	1.2 Prerequisites

	2 [20’] Set up the OpenText Thrust Studio IDE
	2.1 Download and install VS Code
	2.2 Add the OpenText Thrust Studio extension pack to VS Code
	2.3 Install the LTS version of Node.js
	2.4 Verify the Node.js installation from VS Code

	3 [10’] Set up a connection to the developer organization
	3.1 Add an organization profile
	3.2 Test the connection
	3.3 Add a tenant to the organization profile

	4 [10’] Create an OpenText project
	4.1 Create a file system folder for the Contract Approval application project
	4.2 Set up an OpenText project for the Contract Approval application
	4.3 Install Java

	5 [5’] Create a namespace
	5.1 Create the Contract Approval namespace

	6 [10’] Create a trait
	6.1 Create the Approval trait

	7 [25’] Create types
	7.1 Create the Contract type
	7.2 Create the Loan Contract type
	7.3 Create the Customer type

	8 [10’] Create (user) groups
	8.1 Create the administrators group
	8.2 Create the line_managers group
	8.3 Create the risk_managers group
	8.4 Create the contract_approval_users group

	9 [15’] Create ACLs
	9.1 Create the created ACL
	9.2 Create the pending_approval ACL
	9.3 Create the completed ACL

	10 [25’] Create a decision table
	10.1 Create the Required Approvals decision table

	11 [140’] Create workflows
	11.1 Create the Solvency Check workflow
	11.1.1 Create the workflow model
	11.1.2 Understand the workflow editor user interface
	11.1.3 Set the workflow attributes
	11.1.4 Build the process definition

	11.2 Create the Manager Approval workflow
	11.2.1 Create the workflow model
	11.2.2 Set the workflow attributes
	11.2.3 Build the process definition

	11.3 Create the Contract Approval workflow
	11.3.1 Create the workflow model
	11.3.2 Set the workflow attributes
	11.3.3 Build the process definition

	12 [25’] Deploy an application to the OpenText Thrust Services
	12.1 Deploy the Contract Approval application and get the application credentials
	12.2 Verify that the application is deployed
	12.3 Add the redirect URL for the application authentication flow
	12.4 Add the application users to the application groups

	13 [25’] Work with the OpenText Thrust Services APIs
	13.1 Download and install Postman
	13.2 Download the Contract Approval application
	13.3 Import the Postman collection and environment into Postman
	13.4 Verify the deployment of the application models using the OpenText Thrust Services APIs

	14 [30’] Build the Contract Approval application
	14.1 Import the Contract Approval App code into your project
	14.2 Understand the main logic of the Contract Approval application
	14.3 Authenticate and get authorized with the OpenText Thrust Services APIs
	14.4 Set the environment variables
	14.5 Use the content (CSS and CMS) APIs
	14.6 Use the Workflow Service API
	14.7 Use the Viewer Service API
	14.8 Use the Risk Guard Service API

	15 [60’] Test the Contract Approval application
	15.1 Start the Contract Approval application and sign in
	15.2 Approve a standard contract that only requires automatic approval (no additional required approvals)
	15.3 Approve a loan contract that requires all additional approvals
	15.4 Reject a manual contract approval task
	15.5 Expire a manual contract approval task

	16 [15’] Bonus exercise: Use the ocp command line interface
	16.1 Install the ocp cli
	16.2 Use the developer profile
	16.3 Deploy the application project from command line

	About OpenText

